1. Saleh, B. E. A. and M. C. Teich, Fundamental of Photonics, John Wiley & Son, 1991.
doi:10.1002/0471213748
2. Lin, C. F., Optical Components for Communications, Kluwer Academic Publishing, 2004.
3. Chew, W.-C., Waves and Fields in Inhomogeneous Media, Van Norstrand Reinhold, New York, 1990.
4. Ishimaru, A., "Electromagnetic Propagation, Radiation, and Scattering," Prentice Hall, Englewood Cliffs, N.J., 1991. Google Scholar
5. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 2000.
6. Chiang, Y. C., Y. Chiou, and H. C. Chang, "Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles," J. of Lightwave Technology, Vol. 2, No. 8, 1609-1618, Aug. 2002.
doi:10.1109/JLT.2002.800292 Google Scholar
7. Chang, H.-W. and W.-C. Cheng, "Analysis of dielectric waveguide termination with tilted facets by analytic continuity method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1653-1662, 2007. Google Scholar
8. Chang, H.-W., W.-C. Cheng, and S.-M. Lu, "Layer-mode transparent boundary condition for the hybrid FD-FD method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606 Google Scholar
9. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Son, 2002.
10. Feit, M. D., J. A. Fleck, and Jr., "Light propagation in graded-index optical fibers," Applied Optics, Vol. 17, No. 24, 3990-3998, 1978.
doi:10.1364/AO.17.003990 Google Scholar
11. Koch, T. B., J. Davies, and D. Wickramasinghe, "Finite element finite-difference propagation algorithm for integrated optical devices," Electronics Letters, Vol. 25, No. 8, 514-516, 1989.
doi:10.1049/el:19890352 Google Scholar
12. Chang, H.-W. and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation --- Mathematical and numerical formulations," Progress In Electromagnetics Research, Vol. 78, 329-347, 2008.
doi:10.2528/PIER07091002 Google Scholar
13. Mittra, R., Y. L. Hou, and V. Jannejad, "Analysis of open dielectric waveguides using mode-matching technique and variational methods," IEEE Trans. Microwave Theory Tech., Vol. 28, 36-43, 1980.
doi:10.1109/TMTT.1980.1130003 Google Scholar
14. Sudbo, A. S., "Film mode matching: A versatile numerical method for vector mode field calculations in dielectric waveguides," Pure Appl. Opt., Vol. 2, 211-233, 1993.
doi:10.1088/0963-9659/2/3/007 Google Scholar
15. Chang, H.-W., T.-L. Wu, and M.-H. Sheng, "Vectorial modal analysis of dielectric waveguides based on coupled transverse-mode integral equation: I | Mathematical formulations," J. Opt. Soc. Amer. A, Vol. 23, 1468-1477, Jun. 2006.
doi:10.1364/JOSAA.23.001468 Google Scholar
16. Chang, H.-W. and T.-L. Wu, "Vectorial modal analysis of dielectric waveguides based on coupled transverse-mode integral equation: II --- Numerical analysis," J. Opt. Soc. Amer. A, Vol. 23, 1478-1487, Jun. 2006.
doi:10.1364/JOSAA.23.001478 Google Scholar
17. Cheng, Q. and T. J. Cui, "Guided modes and continuous modes in parallel-plate waveguides excited by a line source," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1577-1587, 2007. Google Scholar
18. Chang, H.-W. and M.-H. Sheng, "Errata for the paper entitled `Dielectric waveguide devices based on coupled transverse-mode integral equation --- Mathematical and numerical formulations' ," Progress In Electromagnetics Research C, Vol. 8, 195-197, 2009.
doi:10.2528/PIERC09041001 Google Scholar
19. Rostami, A. and H. Motavali, "Asymptotic iteration method: A powerful approach for analysis of inhomogeneous dielectric slab waveguides," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.
doi:10.2528/PIERB08011701 Google Scholar
20. Motavali, H. and A. Rostami, "Exactly modal analysis of inhomogeneous slab waveguide using nikiforov-uvarov method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 681-692, 2008.
doi:10.1163/156939308784159507 Google Scholar
21. Wu, T.-L. and H.-W. Chang, "Guiding mode expansion of a TE and TM transverse-mode integral equation for dielectric slab waveguides with an abrupt termination," J. Opt. Soc. Amer. A, Vol. 18, 2823-2832, Nov. 2003. Google Scholar
22. Soldano, L. B. and E. Pennings, "Optical multi-mode interference devices based on self-imaging: Principles and applications," J. of Lightwave Technology, Vol. 13, 615-627, 1995.
doi:10.1109/50.372474 Google Scholar
23. Bachmann, M., P. Besse, and H. Melchior, "Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting," Applied Optics, Vol. 34, 6898-6910, Oct. 1995. Google Scholar
24. Feng, J.-Y., P. Chang, T. Lay, and T. Chang, "Novel stepped-width design concept for compact multimode-interference couplers with low cross-coupling ratio," IEEE Photonics Tech. Letters, Vol. 19, No. 4, 224-226, Feb. 2007.
doi:10.1109/LPT.2006.890762 Google Scholar
25. Lilonga-Boyenga, D., C. N. Mabika, and G. OkoumouMoko, "Rigorous analysis of uniaxial discontinuities microwave components using a new multimodal variational formulation," Progress In Electromagnetics Research B, Vol. 2, 61-71, 2008.
doi:10.2528/PIERB07102403 Google Scholar
26. Liao, S., "Miter bend mirror design for corrugated waveguides," Progress In Electromagnetics Research Letters, Vol. 10, 157-162, 2009.
doi:10.2528/PIERL09062103 Google Scholar