1. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.
2. Serdyukov, A., I. Semchenko, S. Treyakov, and A. Sihvola, Elecromagnetics of Bi-anisotropic Materials Theory and Applications, Gordon and Breach Science Publishers, 2001.
3. Bohren, C. F., "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, 458-462, 1974.
doi:10.1016/0009-2614(74)85144-4 Google Scholar
4. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface Sci., Vol. 66, 105-109, 1978.
doi:10.1016/0021-9797(78)90189-3 Google Scholar
5. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propagat., Vol. 51, 1077-1084, 2003.
doi:10.1109/TAP.2003.811501 Google Scholar
6. Wang, D. X., E. K. N. Yung, R. S. Chen, and P. Y. Lau, "An efficient volume integral equation solution to EM scattering by complex bodies with inhomogeneous bi-isotropy," IEEE Trans. Antennas Propagat., Vol. 55, 1970-1980, 2007.
doi:10.1109/TAP.2007.900260 Google Scholar
7. Semichaevsky, A., A. Akyurtlu, D. Kem, D. H. Werner, and M. G. Bray, "Novel BI-FDTD approach for the analysis of chiral cylinders and spheres ," IEEE Trans. Antennas Propagat., Vol. 54, 925-932, 2006.
doi:10.1109/TAP.2006.869898 Google Scholar
8. Akyurtlu, A. and D. H. Werner, "A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Trans. Antennas Propagat., Vol. 52, 2267-2276, 2004.
doi:10.1109/TAP.2004.834153 Google Scholar
9. Sharma, R. and N. Balakrishnan, "Scattering of electromagnetic waves from arbitrary shaped bodies coated with a chiral material," Smart Mater. Struct., Vol. 7, 851-866, 1998.
doi:10.1088/0964-1726/7/6/013 Google Scholar
10. Sheng, X. Q., J. M. Jin, J. M. Song, W. C. Chew, and C. C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propagat., Vol. 46, 1718-1726, 1998.
doi:10.1109/8.736628 Google Scholar
11. Kolundzija, B. M., "Electromagnetic modeling of composite metallic and dielectric structures," IEEE Trans. Microw. Theory Tech., Vol. 47, 1021-1032, 1999.
doi:10.1109/22.775434 Google Scholar
12. Donepudi, K. C., J. M. Jin, and W. C. Chew, "A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 51, 2814-2821, 2003.
doi:10.1109/TAP.2003.817979 Google Scholar
13. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetic Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301 Google Scholar
14. Wang, H. G., C. H. Chan, and L. Tsang, "A new multilevel Green's function interpolation method for large-scale low-frequency EM simulations," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 24, 1427-1443, 2005.
doi:10.1109/TCAD.2005.850804 Google Scholar
15. Wang, H. G. and C. H. Chan, "The implementation of multilevel Green's function interpolation method for full-wave electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. 55, 1348-1358, 2007.
doi:10.1109/TAP.2007.895576 Google Scholar
16. Li, L., H. G. Wang, and C. H. Chan, "An improved multilevel Green's function interpolation method with adaptive phase compensation for large-scale full-wave EM simulation," IEEE Trans. Antennas Propagat., Vol. 56, 1381-1393, 2008.
doi:10.1109/TAP.2008.922611 Google Scholar
17. Shi, Y., H. G. Wang, L. Li, and C. H. Chan, "Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects," J. Opt. Soc. Am. A, Vol. 25, 2535-2548, 2008.
doi:10.1364/JOSAA.25.002535 Google Scholar
18. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving a boundary integral equation of wave scattering," Microw. Opt. Tech. Lett., Vol. 7, 456-461, 1994.
doi:10.1002/mop.4650071013 Google Scholar
19. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, 1488-1493, 1997.
doi:10.1109/8.633855 Google Scholar
20. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
21. Zhao, X. W., X.-J. Dang, Y. Zhang, and C.-H. Liang, "MLFMA analysis of waveguiude arrays with narrow-wall slots," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1063-1078, 2007. Google Scholar
22. Wang, P., Y.-J. Xie, and R. Yang, "Novel pre-corrected multilevel fast multipole algorithm for electrical large radiation problem," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1733-1743, 2007. Google Scholar
23. Ouyang, J., F. Yang, S. W. Yang, and Z. P. Nie, "Exact simulation method VSWIE+MLFMA for analysis radiation pattern of probe-feed conformal microstrip antennas and the application of synthesis radiation pattern of conformal array mounted on finite-length PEC circular with DES ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1995-2008, 2007.
doi:10.1163/156939307783152803 Google Scholar
24. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 16, 1059-1072, 1997.
doi:10.1109/43.662670 Google Scholar
25. Nie, X. C., N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, "A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects," IEEE Trans. Antennas Propagat., Vol. 52, 818-824, 2005. Google Scholar
26. Yuan, T., L.-W. Li, M.-S. Leong, J.-Y. Li, and N. Yuan, "Efficient analysis and design of finite phased arrays of printed dipoles using fast algorithm: Some case studies," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 737-754, 2007.
doi:10.1163/156939307780749057 Google Scholar
27. Mittra, R., Computer Techniques for Electromagnetics, Permagon, Elmsford, NY, 1973.
28. Mautz, J. R. and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution," AEU, Vol. 33, 71-80, 1979. Google Scholar
29. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, 329-342, 1997.
doi:10.1109/8.558649 Google Scholar
30. Horn, R. A. and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
31. Wang, H. G., C. H. Chan, L. Tsang, and K. F. Chan, "Mixture effective permittivity simulations using IMLMQRF method on preconditioned EFIE ," Progress In Electromagnetics Research, Vol. 57, 285-310, 2006.
doi:10.2528/PIER05072603 Google Scholar
32. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residual algorithm for solving non symmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, 856-869, 1986. Google Scholar
33. Rui, P.-L. and R.-S. Chen, "Implicitly restarted gmres fast fourier transform method for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 973-986, 2007.
doi:10.1163/156939307780748968 Google Scholar
34. King, A. S. and W. J. Bow, "Scattering from a finite array of microstrip patches," IEEE Trans. Antennas Propagat., Vol. 40, 770-774, 1992.
doi:10.1109/8.155741 Google Scholar