Vol. 100
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-01-04
Three-Dimensional Nonlinear Inversion of Electrical Capacitance Tomography Data Using a Complete Sensor Model
By
Progress In Electromagnetics Research, Vol. 100, 219-234, 2010
Abstract
Electrical Capacitance Tomography (ECT) is a non-invasive and non-destructive imaging technique that uses electrical capacitance measurements at the periphery of an object to generate map of dielectric permittivity of the object. This visualization method is a relatively mature industrial process tomography technique, especially in 2D imaging mode. Volumetric ECT is a new method that poses major computational challenges in image reconstruction and new challenges in sensor design. This paper shows a nonlinear image reconstruction method for 3D ECT based on a validated forward model. The method is based on the finite element approximation for the complete sensor model and the solution of the inverse problem with nonlinear iterative reconstruction. The nonlinear algorithm has been tested against some complicated experimental test cases, and it has been demonstrated that by using an improved forward model and nonlinear inversion method, very complex shaped samples can be reconstructed. The reconstruction of very complex geometry with objects in the shape of letters H, A, L and T is extremely promising for the applications of 3D ECT.
Citation
Robert Banasiak Radoslaw Wajman Dominik Sankowski Manuchehr Soleimani , "Three-Dimensional Nonlinear Inversion of Electrical Capacitance Tomography Data Using a Complete Sensor Model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201
http://www.jpier.org/PIER/pier.php?paper=09111201
References

1. Banasiak, R., R. Wajman, and M. Soleimani, "An efficient nodal Jacobian method for 3D electrical capacitance image reconstruction," Insight --- Non-destructive Testing and Condition Monitoring, Vol. 51, No. 1, 36-38, 2009.
doi:10.1784/insi.2009.51.1.36

2. Calderon, A. P., "On an inverse boundary value problem," Seminar on Numerical Analysis and Its Applications to Continuum Physics (Rio de Janeiro), 65-73, Sociedade Brasileira de Matematica, 1980.

3. Cheney, M., D. Isaacson, and J. C. Newell, "Electrical impedance tomography," SIAM Review, Vol. 41, No. 1, 85-101, 1999.
doi:10.1137/S0036144598333613

4. Dyakowski, T., L. F. C. Jeanmeure, W. B. Zimmerman, and W. Clark, "Direct flow-pattern identification using electrical capacitance tomography," Experimental Thermal and Fluid Science, Vol. 26, No. 6-7, 763-773, 2002.
doi:10.1016/S0894-1777(02)00186-3

5. Nurge, M. A., "Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry," Measurement Science and Technology, Vol. 18, No. 5, 1511-1520, 2007.
doi:10.1088/0957-0233/18/5/042

6. Olszewski, T., P. Brzeski, J. Mirkowski, A. Plaskowski, W. Smolik, and R. Szabatin, "Modular capacitance tomograph," Proc. of 4th International Symposium on Process Tomography, Warsaw, 2006.

7. Romanowski, A., K. Grudzien, R. Banasiak, R. A. Williams, and D. Sankowski, "Hopper flow measurement data visualization: Developments towards 3D," Proc. of 5th World Congress on Industrial Process Tomography, Bergen, Norway, 2006.
doi:10.2528/PIER09010202

8. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.1784/insi.2006.48.10.613

9. Soleimani, M., "Three-dimensional electrical capacitance tomography imaging," Insight --- Non-destructive Testing and Condition Monitoring, Vol. 48, No. 10, 613-617, 2006.
doi:10.1088/0957-0233/17/8/009

10. Wajman, R., R. Banasiak, L. Mazurkiewicz, T. Dyakowski, and D. Sankowski, "Spatial imaging with 3D capacitance measurements," Measurement Science and Technology, Vol. 17, No. 8, 2113-2118, August 2006.

11. Warsito, W. and L. S. Fan, "Development of 3-dimensional electrical capacitance tomography based on neural network multi-criterion optimization image reconstruction," Proc. of 3rd World Congress on Industrial Process Tomography, 942-947, 2003.
doi:10.1109/JSEN.2007.891952

12. Warsito, W., Q. Marashdeh, and L. S. Fan, "Electrical capacitance volume tomography," IEEE Sensors Journal, Vol. 7, No. 3-4, 525-535, 2007.
doi:10.1088/0957-0233/12/12/323

13. Warsito, W. and L. S. Fan, "Neural network based multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography," Measurement Science and Technology, Vol. 12, 2198-2210, 2001.

14. Williams, R. A. and M. S. Beck, Process Tomography, Principles, Techniques and Applications, Butterworth-Heinemann, Oxford, UK, 1995.
doi:10.1088/0957-0233/10/11/315

15. Yang, W. Q., D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography," Measurement Science and Technology, Vol. 10, 1065-1069, 1999.
doi:10.1088/0957-0233/14/1/201

16. Yang, W. Q. and L. Peng, "Image reconstruction algorithms for electrical capacitance tomography," Measurement Science and Technology, Vol. 14, R1-R13, 2003.
doi:10.2528/PIER09052003

17. Goharian, M., M. Soleimani, and G. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.1163/156939308786390021

18. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1565-1574, 2008.
doi:10.2528/PIER08052302

19. Cheng, X., B. I.Wu, H. Chen, and J. A. Kong, "Imaging of objects through lossy layer with defects," Progress In Electromagnetics Research, Vol. 84, 11-26, 2008.
doi:10.1163/156939307779378790

20. Huang, C. H., Y. F. Chen, and C. C. Chiu, "Permittivity distribution reconstruction of dielectric objects by a cascaded method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 145-159, 2007.
doi:10.2528/PIER08062904

21. Franceschini, G., M. Donelli, D. Franceschini, M. Benedetti, P. Rocca, and A. Massa, "Microwave imaging from amplitude-only data-advantages and open problems of a two-step multi-resolution strategy," Progress In Electromagnetics Research, Vol. 83, 397-412, 2008.
doi:10.1163/156939309789476301

22. Chen, X. D., "Subspace-based optimization method in electric impedance tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009.
doi:10.2528/PIER09052503

23. Polydorides, N., "Linearization error in electrical impedance tomography," Progress In Electromagnetics Research, Vol. 93, 323-337, 2009.