Vol. 100
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-01-15
The Anisotropic Cell Model in the Colloidal Plasmas
By
Progress In Electromagnetics Research, Vol. 100, 381-396, 2010
Abstract
The anisotropic spherical Wigner-Seitz (WS) cell model --- introduced to describe colloidal plasmas --- is investigated using the linearized Poisson-Boltzmann (PB) equation. As an approximation, the surface potential of the spherical macroparicle expanded in terms of the monopole (q) and the dipole (p) is considered as an anisotropic boundary condition of the linear PB equation. Here, the "apparent" moments q and p are the moments 'seen' in the microion cloud, respectively. Based on a new physical concept, the momentneutrality, the potential around the macroparticle can be solvable analytically if the relationship between the actual moment and the "apparent" moment can be obtained according to the momentneutrality condition in addition to the usual electroneutrality. The calculated results of the potential show that there is an attractive region in the vicinity of macroparticle when the corresponding dipole part of the potential dominates over the monopole part, and there is an attractive region and a repulsive region at the same time, i.e., a potential well, when the corresponding dipole part of the potential just comes into play. It provides the possibility and the conditions of the appearance of periodic structure of the colloidal plasmas, although it is a result of a simple theoretical model.
Citation
Qizheng Ye, and Fei Lu, "The Anisotropic Cell Model in the Colloidal Plasmas," Progress In Electromagnetics Research, Vol. 100, 381-396, 2010.
doi:10.2528/PIER09112401
References

1. Kepler, G. M. and S. Fraden, "Attractive potential between confined colloids at low ionic strength," Phys. Rev. Lett., Vol. 73, No. 2, 356-359, 1995.
doi:10.1103/PhysRevLett.73.356        Google Scholar

2. Carbajal-Tinoco, M. D., F. Castro-Roman, and J. L. Arauz-Lara, "Static properties of confined colloidal suspensions," Phys. Rev. E, Vol. 53, No. 4, 3745-3749, 1996.
doi:10.1103/PhysRevE.53.3745        Google Scholar

3. Crocker, J. C. and D. G. Grier, "Microscopic measurement of the pair interaction potential of charge-stabilized colloid," Phys. Rev. Lett., Vol. 73, No. 2, 352-355, 1994.
doi:10.1103/PhysRevLett.73.352        Google Scholar

4. Crocker, J. C. and D. G. Grier, "When like charge attract: The effects of geometrical confinement on long-range colloidal interactions," Phys. Rev. Lett., Vol. 77, No. 9, 1897-1900, 1996.
doi:10.1103/PhysRevLett.77.1897        Google Scholar

5. Sogami, I. and N. Ise, "On the electrostatic interaction in macroionic solutions," J. Chem. Phys., Vol. 81, No. 12, 6320-6332, 1984.
doi:10.1063/1.447541        Google Scholar

6. Neu, J. C., "Wall-mediated forces between like-charged bodies in an electrolye," Phys. Rev. Lett., Vol. 82, No. 5, 1072-1074, 1999.
doi:10.1103/PhysRevLett.82.1072        Google Scholar

7. Sader, J. E. and D. Y. C. Chan, "Long-range electrostatic attractions between identically charged particles in confined geometries: An unresolved problem," J. Colloid Interface Sci., Vol. 213, 268-269, 1999.
doi:10.1006/jcis.1999.6131        Google Scholar

8. Trizac, E. and J.-L. Raimbault, "Long-range electrostatic interactions between like-charged colloids: Steric and confinement effects," Phys. Rev. E, Vol. 60, No. 6, 6530-6533, 1999.
doi:10.1103/PhysRevE.60.6530        Google Scholar

9. Allahyarov, E., I. D. Amico, and H. Lowen, "Attraction between like-charged macroions by Coulomb depletion," Phys. Rev. Lett., Vol. 81, No. 6, 1334-1337, 1998.
doi:10.1103/PhysRevLett.81.1334        Google Scholar

10. Messina, R., C. Holm, and K. Kremer, "Strong attraction between charged spheres due to metastable ionized states," Phys. Rev. Lett., Vol. 85, No. 4, 872-875, 2000.
doi:10.1103/PhysRevLett.85.872        Google Scholar

11. Squires, T. M. and M. P. Brenner, "Like-charge attraction and hydrodynamic interaction," Phys. Rev. Lett., Vol. 85, No. 23, 4976-4979, 2000.
doi:10.1103/PhysRevLett.85.4976        Google Scholar

12. Carbajal-Tinoco, M. D. and P. Gonzale-Mozuelos, "Effective attractions between like-charged colloidal particles," J. Chem. Phys., Vol. 117, No. 5, 2344-2350, 2002.
doi:10.1063/1.1487377        Google Scholar

13. Han, Y. and D. G. Grier, "Confinement-induced colloidal attractions in equilibrium," Phys. Rev. Lett., Vol. 91, No. 3, 038302.1-038302.4, 2003.
doi:10.1103/PhysRevLett.91.038302        Google Scholar

14. Chu, J. H. and I. Lin, "Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas," Phys. Rev. Lett., Vol. 72, No. 25, 4009-4012, 1994.
doi:10.1103/PhysRevLett.72.4009        Google Scholar

15. Thomas, H., G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Mohlmann, "Plasma crystal: Coulomb crystallization in a dusty plasma,", Vol. 73, No. 5, 652-655, 1994.
doi:10.1103/PhysRevLett.73.652        Google Scholar

16. Hayashi, Y. and S. Tachibana, "Observation of Coulomb-crystal formation from carbon particles growth in a methane plasma," Jpn. J. Appl. Phys., Vol. 33, No. 6A, L804-L806, 1994.
doi:10.1143/JJAP.33.L804        Google Scholar

17. Melzer, A., T. Trottenberg, and A. Piel, "Experimental determination of the charge on dust particles forming Coulomb lattices," Phys. Lett. A, Vol. 191, No. 3-4, 301-307, 1994.
doi:10.1016/0375-9601(94)90144-9        Google Scholar

18. Vladimirov, S. V. and M. Nambu, "Attraction of charged particulates in plasmas with finite flows," Phys. Rev. E, Vol. 52, No. 3, R2172-R2174, 1995.
doi:10.1103/PhysRevE.52.R2172        Google Scholar

19. Nambu, M., S. V. Vladimirov, and P. K. Shukla, "Attractive forces between charged particulates in plasmas," Phys. Lett. A, Vol. 203, 40-42, 1995.
doi:10.1016/0375-9601(95)00380-L        Google Scholar

20. Takahashi, K., T. Oishi, K. I. Shimomai, Y. Hayashi, and S. Nishino, "Analyses of attractive forces between particles in Coulomb crystal of dusty plasmas by optical manipulations," Phys. Rev. E, Vol. 58, No. 6, 7805-7811, 1998.
doi:10.1103/PhysRevE.58.7805        Google Scholar

21. Melzer, A., V. A. Schweigert, and A. Piel, "Transition from attractive to repulsive forces between dust molecules in a plasma sheath," Phys. Rev. Lett., Vol. 83, No. 16, 3194-3197, 1999.
doi:10.1103/PhysRevLett.83.3194        Google Scholar

22. Ishihara, O., S. V. Vladimirov, and N. F. Cramer, "Effect of a dipolar moment on the wake potential of a dust grain in a flowing plasma," Phys. Rev. E, Vol. 61, No. 6, 7246-7248, 2000.
doi:10.1103/PhysRevE.61.7246        Google Scholar

23. Velegol, D. and P. K. Thwar, "Analytical model for the effect of surface charge nonuniformity on colloidal interactions," Langmuir, Vol. 17, 7687-7693, 2001.
doi:10.1021/la010634z        Google Scholar

24. Hoffmann, N., L. N. Likos, and J.-P. Hansen, "Linear screening of the electrostatic potential around spherical particles with nonspherical charge patterns," Molecular Physics, Vol. 102, No. 9-10, 857-867, 2004.
doi:10.1080/00268970410001695688        Google Scholar

25. Lian, Z. J. and H. R. Ma, "Effective interaction of nonuniformly charged colloid spheres in a bulk electrolyte," J. Chem. Phys., Vol. 127, No. 10, 104507.1-104507.8, 2007.
doi:10.1063/1.2772266        Google Scholar

26. Bordi, F., C. Cametti, S. Sennato, and D. Truzzolillo, "Strong repulsive interactions in polyelectrolyte-liposome cluster close to the ioselectric point: A sign of an arrested state," Phys. Rev. E, Vol. 76, No. 6, 061403.1-061403.1, 2007.
doi:10.1103/PhysRevE.76.061403        Google Scholar

27. Truzzolillo, D., F. Bordi, F. Sciortino, and C. Cametti, "Kinetic arrest in polyion-induced inhomogeneously charged colloidal particle aggregation," Eur. Phys. J. E, Vol. 29, 229-237, 2009.
doi:10.1140/epje/i2009-10471-1        Google Scholar

28. Lee, H. C. and D. Y. Chen, "Phase diagram of crystals of dusty plasma," Phys. Rev. E, Vol. 56, No. 4, 4596-4607, 1997.
doi:10.1103/PhysRevE.56.4596        Google Scholar

29. Mohideen, U., H. U. Rahman, M. A. Smith, M. Rosenberg, and D. A. Mendis, "Intergrain coupling in dusty-plasma Coulomb crystals," Phys. Rev. Lett., Vol. 81, No. 2, 349-352, 1998.
doi:10.1103/PhysRevLett.81.349        Google Scholar

30. Daugherty, J. E., R. K. Porteous, and D. B. Graves, "Electrostatic forces on small particles in low-pressure discharges," J. Appl. Phys., Vol. 73, No. 4, 1617-1620, 1993.
doi:10.1063/1.353194        Google Scholar

31. Hamaguchi, S. and R. T. Farouki, "Polarization force on a charged particulate in a nonuniform plasma," Phys. Rev. E, Vol. 49, No. 5, 4430-4441, 1994.
doi:10.1103/PhysRevE.49.4430        Google Scholar

32. Resendes, D. P., "Dipolar interaction in a colloidal plasma," Phys. Rev. E, Vol. 61, No. 1, 793-800, 2000.
doi:10.1103/PhysRevE.61.793        Google Scholar

33. Dassanayake, U., S. Fraden, and A. Van Blaaderen, "Structure of electroheological fluids," J. Chem. Phys., Vol. 112, No. 8, 3851-3858, 2000.
doi:10.1063/1.480933        Google Scholar

34. Gong, T., D. T. Wu, and D. W. M. Marr, "Electric field-reversible three-dimensional colloidal crystals," Langmuir, Vol. 19, No. 15, 5967-5970, 2003.
doi:10.1021/la0340697        Google Scholar

35. Lumsdon, S. O., E. W. Kaler, and O. D. Velev, "Two-dimensional crystallization of microspheres by a coplanar AC electric field," Langmuir, Vol. 20, No. 6, 2108-2116, 2004.
doi:10.1021/la035812y        Google Scholar

36. Basuray, S. and H.-C. Chang, "Induced dipoles and dielec-trophoresis of nanocolloids in electrolytes," Phys. Rev. E, Vol. 75, No. 6, 060501.1-060501.4, 2007.
doi:10.1103/PhysRevE.75.060501        Google Scholar

37. Mittal, M., P. P. Lele, E. W. Kaler, and E. M. Furst, "Polarization and interactions of colloidal particles in ac electric field," J. Chem. Phys., Vol. 129, No. 6, 064513.1-064513.7, 2008.
doi:10.1063/1.2969103        Google Scholar

38. Pieranski, P., "Two-dimensional interfacial colloidal crystals," Phys. Rev. Lett., Vol. 45, No. 7, 569-572, 1980.
doi:10.1103/PhysRevLett.45.569        Google Scholar

39. Hurd, A. J., "The electrostatic interaction between interfacial colloidal particles," J. Phys. A: Math. Gen., Vol. 18, L1055-L1060, 1985.
doi:10.1088/0305-4470/18/16/011        Google Scholar

40. Plain, B. A., L. Boufendi, J. P. Blondeau, and C. Laure, "Particle generation and behavior in a silane-argon low-pressure discharge under continuous or pulsed radio-frequency excitation," J. Appl. Phys., Vol. 70, No. 4, 1991-2000, 1991.
doi:10.1063/1.349484        Google Scholar

41. Tskhakaya, D. D. and P. K. Shukla, "Dipole-dipole interaction of dust grains in plasmas," AIP Conference Proceedings, Vol. 799, 59-68, 2005.
doi:10.1063/1.2134573        Google Scholar

42. Yaroshenko, V. V., H. M. Thomas, and G. E. Morfill, "The 'dipole instability' in complex plasmas and its role in plasma crystal melting," New J. Phys., Vol. 8, No. 54, 1-11, 2006.        Google Scholar

43. Chen, W., S. Tan, Z. Huang, T.-K. Ng, W. T. Ford, and P. Tong, "Measured long-ranged attractive interaction between charged polystyrene latex spheres at a water-air interface ," Phys. Rev. E, Vol. 74, No. 2, 021406.1-021406.1, 2006.
doi:10.1103/PhysRevE.74.021406        Google Scholar

44. Melandso, F. and J. Goree, "Polarized supersonic plasma flow simulation for charged bodies such as dust particles and spacecraft," Phys. Rev. E, Vol. 52, No. 5, 5312-5326, 1995.
doi:10.1103/PhysRevE.52.5312        Google Scholar

45. Lapenta, G., "Dipole moments on dust particles immersed in anistropic plasmas," Phys. Rev. Lett., Vol. 75, No. 24, 4409-4412, 1995.
doi:10.1103/PhysRevLett.75.4409        Google Scholar

46. Lapenta, G. and J. U. Brackbill, "Simulation of plasma shielding of dust particles in anistropic plasmas," Phys. Scr., Vol. T75, 264-266, 1982.        Google Scholar

47. Ivlev, A. V., G. Morfill, and V. E. Fortv, "Potential of a dielectric particle in a flow of a collisionless plasma," Phys. Plasmas, Vol. 6, No. 5, 1415-1420, 1999.
doi:10.1063/1.873391        Google Scholar

48. Hou, L. H., Y. N.Wang, and Z. L. Miskovic, "Interaction potential among dust grains in a plasma with ion flow," Phys. Rev. E, Vol. 64, No. 4, 046406.1-046406.7, 2001.
doi:10.1103/PhysRevE.64.046406        Google Scholar

49. Alexander, S., P. M. Chaikin, P. Grant, G. J. Morales, P. Pincus, and D. Hone, "Charge renormalization, osmostic pressure, and bulk modulus of colloidal crystals: Theory," J. Chem. Phys., Vol. 80, No. 11, 5776-5781, 1984.
doi:10.1063/1.446600        Google Scholar

50. Stevens, M. J., M. L. Falk, and M. O. Robbins, "Interaction between charged spherical macroions," J. Chem. Phys., Vol. 104, No. 13, 5209-5219, 1996.
doi:10.1063/1.471148        Google Scholar

51. Bocquet, L., E. Trizac, and M. Aubouy, "Effective charge saturation in colloidal suspensions," J. Chem. Phys., Vol. 117, No. 17, 8138-8152, 2002.
doi:10.1063/1.1511507        Google Scholar

52. Tellez, G. and E. Trizac, "On the bulk modulus of the cell model of charged macromolecules suspensions," J. Chem. Phys., Vol. 118, No. 7, 3362-3367, 2003.
doi:10.1063/1.1538604        Google Scholar

53. Tamashiro, M. N. and H. Schiessel, "Where the linearized Poisson-Boltzmann cell model fails: Spurious phase separation in charged colloidal suspensions," J. Chem. Phys., Vol. 119, No. 3, 1855-1865, 2003.
doi:10.1063/1.1579676        Google Scholar

54. Hsin, W. L., T.-Y. Wang, Y.-J. Sheng, and H.-K. Tsao, "Charge renormalization of charged spheres based on thermodynamic properties," J. Chem. Phys., Vol. 121, No. 11, 5494-5504, 2004.
doi:10.1063/1.1782431        Google Scholar

55. Torres, A., G. Tellez, and R. Van Roij, "The polydisperse cell model: Nonlinear screening and charge renormalization in colloidal mixtures," J. Chem. Phys., Vol. 128, No. 15, 154906.1-154906.8, 2008.
doi:10.1063/1.2907719        Google Scholar

56. Chatterjee, K. and J. Poggie, "A parallelized 3D floating random-walk algorithm for the solution of the nonlinear Poisson-Boltzmann equation," Progress In Electromagnetics Research, Vol. 57, 237-252, 2006.
doi:10.2528/PIER05072802        Google Scholar

57. Ye, Q. and D. Tan, "Momentneutrality and dipole-screened model in the dusty plasma," J. Phys. D: Appl. Phys., Vol. 40, No. 16, 4836-4841, 2007.
doi:10.1088/0022-3727/40/16/012        Google Scholar