Vol. 101
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-01-22
Wireless Communication in Boxes with Metallic Enclosure Based on Time-Reversal Ultra-Wideband Technique: a Full-Wave Numerical Study
By
Progress In Electromagnetics Research, Vol. 101, 63-74, 2010
Abstract
In this paper, two full-wave simulators (one using finite difference time domain method and the other the method of moments) are developed, in order to analyze wireless communication in boxes with metallic enclosure based on time-reversal ultra-wideband (TR-UWB) technique. Impedance boundary conditions are exploited to model realistic metallic walls, and parallel computing is applied to relieve high computational resources requirements. Focusing on both space and time is exhibited by numerical results in arbitrarily shaped metallic boxes, which demonstrates the feasibility of TR-UWB communication in metallic boxes.
Citation
Huiqing Zhai, Sungyong Jung, and Mingyu Lu, "Wireless Communication in Boxes with Metallic Enclosure Based on Time-Reversal Ultra-Wideband Technique: a Full-Wave Numerical Study," Progress In Electromagnetics Research, Vol. 101, 63-74, 2010.
doi:10.2528/PIER09112502
References

1. Hwu, S. U., Y.-C. Loh, and C. C. Sham, "Space station wireless local area network signal characteristics modeling and measurements," 2006 IEEE/AIAA 25th Digital Avionics Systems Conference, Portland, Oregon, October 2006.

2. Niu, W., J. Li, and T. Talty, "Ultra-wideband channel modeling for intravehicle environment," EURASIP Journal on Wireless Communications and Networking, Vol. 2009, Article ID 806209, 12, 2009.

3. Van't Hof, J. P. and D. D. Stancil, "Characterizing dispersion in the enclosed-space radio channel using a composite mode model," IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, Honolulu, HI, April 2005.

4. Naqvi, I. H. and G. E. Zein, "Time domain measurements for a time reversal SIMO system in reverberation chamber and in an indoor environment," IEEE International Conference on Ultra-wideband, September 2008.

5. Zhou, C., N. Guo, and R. C. Qiu, "Time-reversed ultra-wideband (UWB) multiple input multiple output (MIMO) based on measured spatial channels," IEEE Transactions on Vehicular Technology, Vol. 59, No. 6, 2884-2898, July 2009.

6. Win, M. Z. and R. A. Scholtz, "Characterization of ultra-wide bandwidth wireless indoor channels: A communication-theoretic view," IEEE Journal on Selected Areas in Communications, Vol. 20, No. 9, 1613-1627, 2002.
doi:10.1109/JSAC.2002.805031

7. Oestges, C., A. D. Kim, G. Papanicolaou, and A. J. Paulrai, "Characterization of space-time focusing in time-reversed random fields," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 283-293, January 2005.
doi:10.1109/TAP.2004.836399

8. Wertz, P., D. Zimmermann, F. M. Landstorfer, G. Wolfle, and R. Hoppe, "Hybrid ray optical models for the penetration of radio waves into enclosed spaces," 58th IEEE Vehicular Technology Conference, Orlando, FL, October 2003.

9. Yuferev, S. and N. Ida, "Selection of the surface impedance boundary conditions for a given problem," IEEE Transactions on Magnetics, Vol. 35, No. 3, 1486-1489, May 1999.
doi:10.1109/20.767248

10. Leontovich, M. A., "On the approximate boundary conditions for electromagnetic fields on the surface of well conducting bodies," Investigations of Propagation of Radio Waves, 2-20, 1948.

11. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 2005.

12. Hua, Y. and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 38, No. 5, 814-824, 1990.
doi:10.1109/29.56027

13. Beggs, J. H., R. J. Luebbers, K. S. Yee, and K. S. Kunz, "Finite-difference time-domain implementation of surface impedance boundary conditions," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 1, 49-56, January 1992.
doi:10.1109/8.123352

14. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418.
doi:10.1109/TAP.1982.1142818

15. Yu, W., R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel Finite-difference Time-domain Method, Artech House, Norwood, MA, 2006.

16. Gropp, W., E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-passing Interface, 2nd Ed., MIT Press, Cambridge, MA, 1999.