Vol. 101
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-02-10
An Innovative Multi-Source Strategy for Enhancing the Reconstruction Capabilities of Inverse Scattering Techniques
By
Progress In Electromagnetics Research, Vol. 101, 349-374, 2010
Abstract
Active microwave imaging techniques are aimed at reconstructing an unknown region under test by means of suitable inversion algorithms starting from the measurement of the scattered electromagnetic field. Within such a framework, this paper focuses on an innovative strategy that fully exploits the information arising from the illumination of the investigation domain with different configurations as well as radiation patterns of the probing sources. The proposed approach can be easily integrated with multiview techniques and, unlike multifrequency methods, it does not require additive a-priori information on the dielectric nature of the scatterer under test. A large number of numerical simulations concerned with 2D geometries confirms the effectiveness of the inversion strategy as well as its robustness with respect to noise on data. Moreover, the results of a comparative study with single-source methodologies further point out the advantages and potentialities of the new approach.
Citation
Federico Caramanica, and Giacomo Oliveri, "An Innovative Multi-Source Strategy for Enhancing the Reconstruction Capabilities of Inverse Scattering Techniques," Progress In Electromagnetics Research, Vol. 101, 349-374, 2010.
doi:10.2528/PIER09120803
References

1. Abubakar, A., P. M. Van den Berg, and J. T. Fokkema, "Time-lapse TM-polarization electromagnetic imaging," Subsurf. Sensing Tech. Applic., Vol. 4, 117-135, 2003.
doi:10.1023/A:1023067631716

2. Yu, Y., T. Yu, and L. Carin, "Three-dimensional inverse scattering of a dielectric target embedded in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 42, 957-973, 2004.
doi:10.1109/TGRS.2003.820601

3. Hoole, S. R. H., S. Subramaniam, R. Saldanha, J.-L. Coulomb, and J.-C. Sabonnadiere, "Inverse problem methodology and finite elements in the identifications of cracks, sources, materials, and their geometry in inaccessible locations," IEEE Trans. Magn., Vol. 27, 3433-3443, 1991.
doi:10.1109/20.79086

4. Bolomey, J. C., Frontiers in Industrial Process Tomography, Engineering Foundation, 1995.

5. Bolomey, J. C., "Recent European developments in active microwave imaging for industrial, scientific, and medical applications," IEEE Trans. Microwave Theory Tech., Vol. 37, 2109-2117, 1991.
doi:10.1109/22.44129

6. Louis, K., "Medical imaging: State of the art and future development," Inverse Problems, Vol. 8, 709-738, 1992.
doi:10.1088/0266-5611/8/5/003

7. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Trans. Microwave Theory Tech., Vol. 52, 1909-1916, 2004.
doi:10.1109/TMTT.2004.832016

8. Colton, D. and R. Kress, Inverse Acoustics and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, Germany, 1992.

9. Bertero, M. and P. Boccacci, Introduction to Inverse Problem in Imaging, IoP Publishing, Philadelphia, 1998.

10. Denisov, A. M., Elements of Theory of Inverse Problems, VSP, Utrecht, The Netherlands, 1999.

11. Belkebir, K., J. M. Elissalt, J. M. Geffrin, and C. Pichot, "Newton-Kantorovich and modified gradient --- Inversion algorithms applied to Ipswich data," IEEE Antennas Propag. Mag., Vol. 38, 41-43, 1996.
doi:10.1109/MAP.1996.511952

12. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Trans. Antennas Propagat., Vol. 45, 203-215, 1997.
doi:10.1109/8.560338

13. Pastorino, M., A. Massa, and S. Caorsi, "A microwave inverse scattering technique for image reconstruction based on a genetic algorithm," IEEE Trans. Instrum. Meas., Vol. 49, No. 3, 573-578, Jun. 2000.
doi:10.1109/19.850397

14. Van den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of art," Progress In Electromagnetics Research, Vol. 34, 189-218, 2001.
doi:10.2528/PIER01061103

15. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, 481-494, 2004.
doi:10.1163/156939304774113089

16. Caorsi, S., G. L. Gragnani, and M. Pastorino, "An approach to microwave imaging using a multiview moment method solution for a two-dimensional infinite cylinder," IEEE Trans. Microwave Theory Tech., Vol. 39, 1062-1067, 1991.
doi:10.1109/22.81683

17. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: retrievable information and measurements strategies," Radio Science, 2123-2138, 1997.
doi:10.1029/97RS01826

18. Belkebir, K., R. Kleinman, and C. Pichot, "Microwave imaging --- Location and shape reconstruction from multifrequency scattering data," IEEE Trans. Microwave Theory Tech., Vol. 45, 469-475, 1997.
doi:10.1109/22.566625

19. Bucci, O. M., L. Crocco, T. Isernia, and V. Pascazio, "Inverse scattering problems with multifrequency data: Reconstruction capabilities and solution strategies," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 1749-1756, 2000.
doi:10.1109/36.851974

20. Franceschini, D., M. Donelli, R. Azaro, and A. Massa, "Dealing with multifrequency scattering data through the IMSA," IEEE Trans. Antennas Propagat., Vol. 55, 2412-2417, 2007.
doi:10.1109/TAP.2007.901909

21. Zhang, W., L. Li, and F. Li, "Multifrequency imaging from intensity-only data using the phaseless data distorted Rytov iterative method," IEEE Trans. Antennas Propagat., Vol. 57, 290-295, 2009.
doi:10.1109/TAP.2008.2009785

22. Chew, W. C. and J.-H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous bodies," IEEE Microwave Guided Wave Lett., Vol. 5, 439-441, 1995.
doi:10.1109/75.481854

23. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multi-scaling for microwave imaging," IEEE Trans. Microwave Theory Tech., Vol. 51, 1162-1173, 2003.
doi:10.1109/TMTT.2003.809677

24. Donelli, M., D. Franceschini, P. Rocca, and A. Massa, "Three-dimensional microwave imaging problems solved through an efficient multi-scaling particle swarm optimization," IEEE Trans. Geosci. Remote Sens., Vol. 47, 1467-1481, 2009.
doi:10.1109/TGRS.2008.2005529

25. Franceschini, D., M. Donelli, G. Franceschini, and A. Massa, "Iterative image reconstruction of two-dimensional scatterers illuminated by TE waves," IEEE Trans. Microwave Theory Techn., Vol. 54, 1484-1494, Apr. 2006.
doi:10.1109/TMTT.2006.871921

26. Kaas, M., W. Rieger, C. Huber, G. Lehner, and W. M. Rucker, "Improvement of inverse scattering results by combining TM-and TE-polarized probing waves using an iterative adaptation technique," IEEE Trans. Magn., Vol. 35, 1574-1577, 1999.
doi:10.1109/20.767274

27. Chou, C.-P. and Y.-W. Kiang, "Inverse scattering of dielectric cylinders by a cascaded TE-TM method," IEEE Trans. Microwave Theory Techn., Vol. 47, 1923-1930, 1999.
doi:10.1109/22.795065

28. Poli, L. and P. Rocca, "Exploitation of TE-TM scattering data for microwave imaging through the multi-scaling reconstruction strategy," Progress In Electromagnetics Research, Vol. 99, 245-260, 2009.
doi:10.2528/PIER09101105

29. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sensing, Vol. 39, 1596-1607, 2001.
doi:10.1109/36.934091

30. Jones, D. S., The Theory of Electromagnetism, Pergamon Press, Oxford, UK, 1964.

31. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propagat., Vol. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

32. Caorsi, S., A. Massa, and M. Pastorino, "Numerical assessment concerning a focused microwave diagnostic method for medical applications," IEEE Trans. Antennas Propagat., Vol. 48, 1815-1830, 2000.
doi:10.1109/8.841897

33. Kohn, R. V. and A. McKenney, "Numerical implementation of a variational method for electrical impedance tomography," Inverse Problems, Vol. 6, 389-414, 1990.
doi:10.1088/0266-5611/6/3/009

34. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Trans. Geosci. Remote Sens., Vol. 38, 1697-1708, 2000.
doi:10.1109/36.851968

35. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 41, 2745-2753, 2003.
doi:10.1109/TGRS.2003.815676

36. Donelli, M. and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microwave Theory Techn., Vol. 53, 1761-1776, 2004.

37. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Problems | 25th Year Special Issue of Inverse Problems, Invited Topical Review, Vol. 25, 2009.
doi:10.1088/0266-5611/13/6/013

38. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1109/TMTT.2004.825699

39. Caorsi, S., M. Donelli, and A. Massa, "Detection, location and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. Microwave Theory Techn., Vol. 52, 1217-1228, 2004.

40. Caorsi, S., M. Donelli, and A. Massa, "Analysis of the stability and robustness of the iterative multi-scaling approach for microwave imaging applications," Radioscience, Vol. 39, 2004.
doi:10.1109/LGRS.2005.853200

41. Franceschini, G., D. Franceschini, and A. Massa, "Full-vectorial three-dimensional microwave imaging through the iterative multi-scaling strategy --- A preliminary assessment," IEEE Geosci. Remote Sens. Lett., Vol. 2, 428-432, 2005.
doi:10.1109/TGRS.2005.861412

42. Donelli, M., G. Franceschini, A. Martini, and A. Massa, "An integrated multi-scaling strategy based on a particle swarm algorithm for inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 44, 298-312, 2006.

43. Benedetti, M., D. Lesselier, M. Lambert, and A. Massa, "A multi-resolution technique based on shape optimization for the reconstruction of homogeneous dielectric objects," Inverse Problems, Vol. 25, 1-26, 2009.
doi:10.2528/PIER04111001

44. Donelli, M., D. Franceschini, G. Franceschini, and A. Massa, "E®ective exploitation of multi-view data through the iterative multi-scaling method --- An experimental assessment," Progress In Electromagnetics Research, Vol. 54, 137-154, 2005.
doi:10.1109/TGRS.2006.881753

45. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multi-scaling approach," IEEE Trans. Geosci. Remote Sens., Vol. 44, 3527-3539, 2006.
doi:10.1109/TAP.2007.908791

46. Benedetti, M., A. Casagranda, M. Donelli, and A. Massa, "An adaptive multi- scaling imaging technique based on a fuzzy-logic strategy for dealing with the uncertainty of noisy scattering data," IEEE Trans. Antennas Propagat., Vol. 55, 3265-3278, 2007.

47. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, New York, 1997.
doi:10.1109/74.584491

48. Duchene, B., D. Lesselier, and R. E. Kleinman, "Inversion of the 1996 Ipswich data using binary specialization of modified gradient methods," IEEE Antennas Propag. Mag., Vol. 39, 9-12, 1997.
doi:10.1109/TAP.2005.856311

49. Massa, A., D. Franceschini, G. Franceschini, M. Raffetto, M. Pastorino, and M. Donelli, "Parallel GA-based approach for microwave imaging applications," IEEE Trans. Antennas Propagat., Vol. 53, 3118-3127, 2005.