Vol. 101
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-02-01
Simulation and Experimental Verification of W-Band Finite Frequency Selective Surfaces on Infinite Background with 3D Full Wave Solver Nspwmlfma
By
Progress In Electromagnetics Research, Vol. 101, 189-202, 2010
Abstract
We present the design, processing and testing of a W-band finite by infinite and a finite by finite Grounded Frequency Selective Surfaces (FSSs) on infinite background. The 3D full wave solver Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA) is used to simulate the FSSs. As NSPWMLFMA solver improves the complexity matrix-vector product in an iterative solver from O(N2) to O(N log N) which enables the solver to simulate finite arrays with faster execution time and manageable memory requirements. The simulation results were verified by comparing them with the experimental results. The comparisons demonstrate the accuracy of the NSPWMLFMA solver. We fabricated the corresponding FSS arrays on quartz substrate with photolithographic etching techniques and characterized the vector S-parameters with the free space Millimeter Wave Vector Network Analyzer (MVNA).
Citation
Saiful Islam, Johan Stiens, G. Poesen, Roger Vounckx, Joris Peeters, Ignace Bogaert, Daniel De Zutter, and Walter De Raedt, "Simulation and Experimental Verification of W-Band Finite Frequency Selective Surfaces on Infinite Background with 3D Full Wave Solver Nspwmlfma," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
doi:10.2528/PIER09122104
References

1. Koers, G., Noise suppression in active millimeter wave imaging systems, Ph.D. dissertation, Universiteit Brussel, July 2006.

2. Islam, S., J. Stiens, G. Poesen, I. Jager, and R. Vounckx, "Passive frequency selective surface array as a diffuser for destroying millimeter wave coherence," Active and Passive Electronic Components, Vol. 2008, 2008.
doi:10.1155/2008/391745

3. Islam, S., J. Stiens, G. Poesen, I. Jager, and R. Vounckx, "Implementation of dynamic hadamard diffuser as a frequency selective surface for W-band active millimeter wave imaging," Microwave and Optical Technology Letters, Vol. 51, No. 6, 1440-1444, June 2009.
doi:10.1002/mop.24363

4. Kastner, R. and R. Mittra, "Iterative analysis of finite-sized planar frequency selective surfaces with rectangular patches or perforations," IEEE Trans. Antennas Propagat., Vol. 35, No. 4, 372-378, 1987.
doi:10.1109/TAP.1987.1144113

5. Chen, C. C., "Transmission through a conducting screen perforated periodically with apertures," IEEE Trans. Microwave Theory Tech., Vol. 18, No. 9, 627-632, 1970.
doi:10.1109/TMTT.1970.1127298

6. Chen, C. C., "Diffraction of electromagnetic waves by a conducting screen perforated with circular holes," IEEE Trans. Microwave Theory Tech., Vol. 19, No. 5, 475-481, 1971.
doi:10.1109/TMTT.1971.1127548

7. Lee, S. W., "Scattering by dielectric-loaded screen," IEEE Trans. Antennas Propagat., Vol. 19, No. 5, 656-665, 1971.
doi:10.1109/TAP.1971.1140010

8. Montgomery, J. P., "Scattering by an infinite periodic array of thin conductors on a dielectric sheet," IEEE Trans. Antennas Propagat., Vol. 23, No. 1, 70-75, 1975.
doi:10.1109/TAP.1975.1141006

9. Agrawal, V. D. and W. A. Imbriale, "Design of a dichroic Cassegrain subreflector," IEEE Trans. Antennas Propagat., Vol. 27, No. 4, 466-473, 1979.
doi:10.1109/TAP.1979.1142119

10. Tsao, C. H. and R. Mittra, "Spectral domain analysis of frequency selective surfaces comprised of periodic arrays of cross dipoles and Jerusalem cross," IEEE Trans. Antennas Propagat., Vol. 32, No. 5, 478-486, 1984.
doi:10.1109/TAP.1984.1143348

11. Munk, B. A., "Scattering from surface waves on finite FSS," IEEE Trans. Antennas Propagat., Vol. 49, No. 12, 2001.
doi:10.1109/8.982461

12. Bekers, D., Finite antenna arrays: An eigencurrent approach, Ph.D. dissertation, Technische Universiteit Eindhoven, 2004.

13. Fostier, J. and F. Olyslager, "Full-wave electromagnetic scattering at extremely large 2D objects," IET Electronics Letters, Vol. 45, No. 5, 245-246, 2009.
doi:10.1049/el:20093122

14. Van Den Bulcke, S. and A. Franchois, "A full-wave 2.5D volume integral equation solver for 3D millimeter-wave scattering by large inhomogeneous 2D objects," IEEE Trans. Antennas Propagat., Vol. 75, No. 2, 535-545, Feb. 2009.
doi:10.1109/TAP.2008.2011385

15. Song, M., T. Weng, and W. C. Chew, "Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects," Journal of Computational Physics, Vol. 228, No. 3, 921-932, 2009.
doi:10.1016/j.jcp.2008.10.003

16. De Zaeytijd, J., A. Franchois, and J. M. Geffrin, "A new value picking regularization strategy --- Application to the 3D electromagnetic inverse scattering problem," IEEE Trans. Antennas Propagat., Vol. 57, No. 4, 1133-1149, 2009.
doi:10.1109/TAP.2009.2015823

17. Chew, W. C., J. Jin, E. Michielssen, and J. Song, Fast and E±cient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

18. Bogaert, I., J. Peeters, and F. Olyslager, "A nondirective plane wave MLFMA stable at low frequencies," IEEE Trans. Antennas Propagat., Vol. 56, 3752-3767, 2008.
doi:10.1109/TAP.2008.2007356

19. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetic Research, Vol. 55, 47-78, 2005.
doi:10.2528/PIER05021001