Vol. 105
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-29
Performance and Robustness of a Multistatic Mist Beamforming Algorithm for Breast Cancer Detection
By
Progress In Electromagnetics Research, Vol. 105, 403-424, 2010
Abstract
Ultra-Wideband (UWB) radar is one of the most promising emerging technologies for the early detection of breast cancer, and the development of robust beamforming algorithms for imaging has been the subject of a significant amount of research. Extending the monostatic Microwave Imaging via Space Time (MIST) beamformer originally developed by Bond et al., the authors proposed the Multistatic MIST beamforming algorithm that uses the spatial diversity of the receiving antennas to acquire more energy reflected from dielectric scatterers which propagate outwards via different routes, while compensating for multistatic path-dependent attenuation and phase effects. In this paper, the performance and robustness of the Multistatic MIST beamformer is examined across a range of potential clinical scenarios. The multistatic beamformer is directly compared with the traditional monostatic beamformer and the effects of the additional multistatic channels is investigated. Furthermore, the robustness of the beamformer with respect to tumor size and location, variations in dielectric properties, and significantly, different fibroglandular tissue distributions within the breast based on recently published data, is examined.
Citation
Martin O'Halloran Martin Glavin Edward Jones , "Performance and Robustness of a Multistatic Mist Beamforming Algorithm for Breast Cancer Detection," Progress In Electromagnetics Research, Vol. 105, 403-424, 2010.
doi:10.2528/PIER10011205
http://www.jpier.org/PIER/pier.php?paper=10011205
References

1. Society, A. C., Cancer facts and figures 2008, American Cancer Society, 2008.

2. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, National Academy Press, 2001.

3. Bulyshev, A. E., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer ," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, Sep. 2001.
doi:10.1109/10.942596

4. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast ," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000.

5. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II --- Imaging results ," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, Jun. 1999.
doi:10.1109/42.781016

6. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatis, "Two-dimensional analysis of a microwave °at antenna array for breast cancer tomography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1413-1415, Aug. 2000.
doi:10.1109/22.859490

7. Liu, Q. H., Z. Q. Zhang, T. Wang, J. A. Byran, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging I - 2-D forward and inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 1, 123-133, Jan. 2002.
doi:10.1109/22.981256

8. Yu, C., M. Yuan, J. Stang, E. Bresslour, R. T. George, G. A. Ybarra, and W. Joines, "Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data ," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 4, 991-1000, 2008.
doi:10.1109/TMTT.2008.919661

9. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography ," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

10. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, No. 12, 1470-1479, 1998.
doi:10.1109/10.730440

11. Susan, C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antennaarray element ," IEEE Trans. Antennas and Propagat., Vol. 47, No. 5, 783-791, May 1999.
doi:10.1109/8.774131

12. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions ," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, Aug. 2002.
doi:10.1109/TBME.2002.800759

13. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, Nov. 1999.
doi:10.1109/75.808040

14. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887-892, Mar. 2003.
doi:10.1109/TMTT.2003.808630

15. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887-892, Mar. 2003.
doi:10.1109/TMTT.2003.808630

16. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627

17. Li, X., E. J. Bond, B. D. V. Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, Feb. 2005.
doi:10.1109/MAP.2005.1436217

18. Craddock, I. J., R. Nilavalan, J. Leendertz, A. Preece, and R. Benjamin, Experimental investigation of real aperture synthetically organised radar for breast cancer detection, IEEE AP-S International Symposium, Washington, DC, 2005.

19. Hernandez-Lopez, M., M. Quintillan-Gonzalez, S. Garcia, A. Bretones, and R. Martin, "A rotating array of antennas for confocal microwave breast imaging," Microw. Opt. Technol. Lett., Vol. 39, No. 4, 307-311, Nov. 2003.
doi:10.1002/mop.11199

20. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., No. 8, 1690-1705, Aug. 2003.
doi:10.1109/TAP.2003.815446

21. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. van-Veen, "Microwave imaging via space-time beamforming for the early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1163/156939303322235860

22. Li, X., S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 2, 1856-1865, Aug. 2002.

23. Li, X., E. J. Bond, S. C. Hagness, B. D. V. Veen, and D. van der Weide, Three-dimensional microwave imaging via space-time beamforming for breast cancer detection, IEEE AP-S International Symposium and USNC/USRI Radio Science Meeting , San Antonio, TX, USA, Jun. 2002.

24. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, Aug. 2006.
doi:10.1109/TBME.2006.878058

25. Xie, Y., B. Guo, J. Li, and P. Stoica, "Novel multistatic adaptive microwave imaging methods for early breast cancer detection," EURASIP J. Appl. Si. P., Vol. 2006, No. 91961, 1-13, 2006.
doi:10.1051/epjap:2006101

26. Gao, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection ," PIERS Online, Vol. 1, No. 3, 350-353, 2005.

27. Craddock, I. J., R. Nilavalan, A. Preece, and R. Benjamin, Experimental investigation of real aperture synthetically organised radar for breast cancer detection , IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 179-182, Washington, DC, 2005.

28. Klemm, M., I. J. Craddock, J. A. Leendertz, A. W. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array-experimental results," IEEE Trans. Antennas and Propagat., Vol. 57, No. 6, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856

29. Nilavalan, R., A. Gbedemah, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," IET Electronic Letters, Vol. 39, No. 25, 1787-1789, Dec. 2003.
doi:10.1049/el:20031183

30. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection ," PIERS Online, Vol. 1, No. 3, 350-353, 2005.

31. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng., in Press.

32. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

33. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temp, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries ," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

34. Sha, L., E. R. Ward, and B. Stroy, A review of the dielectric properties of normal and malignant breast tissue, Proceedings of the IEEE SoutheastCon, Columbia, South Carolina, USA, Apr. 2002.

35. Haykin, S., Adaptive Filter Theory, 4th Ed., Prentice Hall, 2001.

36. O'Halloran, M., R. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagnetics Research B, Vol. 18, 1-24, 2009.
doi:10.2528/PIERB09080505

37. O'Halloran, M., M. Glavin, and E. Jones, "E®ects of fibroglandular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701

38. Lazebnik, M., M. Okoniewski, J. Booske, and S. Hagness, "Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," Microwave and Wireless Components Letters, IEEE, Vol. 17, No. 12, 822-824, Dec. 2007.
doi:10.1109/LMWC.2007.910465

39. Gabrie, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

40. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz ," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

41. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiplyand-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, Jun. 2008.
doi:10.1109/TBME.2008.919716

42. Fear, E. C. and M. Okoniewski, "Confocal microwave imaging for breast tumor detection: Application to a hemispherical breast model," 2002 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1759-1762, Seattle, WA, USA, 2002.

43. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Antenna configurations for ultra wide band radar detection of breast cancer," SPIE BIOS West, Vol. 7169, San Jose, CA, Jan. 2009.

44. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, No. 1, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014

45. Winters, D. W., E. J. Bond, S. C. Hagness, and B. D. van Veen, "Estimation of the average breast tissue properties at microwave frequencies using a time-domain inverse scattering technique," Proc. EMC, 59-64, Zurich, Feb. 2005.

46. Winters, D. W., E. J. Bond, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique ," IEEE Trans. Antennas and Propagat., Vol. 55, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296