1. Society, A. C., Cancer facts and figures 2008, American Cancer Society, 2008.
2. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, National Academy Press, 2001.
3. Bulyshev, A. E., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer ," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, Sep. 2001.
doi:10.1109/10.942596 Google Scholar
4. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast ," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000. Google Scholar
5. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II --- Imaging results ," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, Jun. 1999.
doi:10.1109/42.781016 Google Scholar
6. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatis, "Two-dimensional analysis of a microwave °at antenna array for breast cancer tomography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1413-1415, Aug. 2000.
doi:10.1109/22.859490 Google Scholar
7. Liu, Q. H., Z. Q. Zhang, T. Wang, J. A. Byran, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging I - 2-D forward and inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 1, 123-133, Jan. 2002.
doi:10.1109/22.981256 Google Scholar
8. Yu, C., M. Yuan, J. Stang, E. Bresslour, R. T. George, G. A. Ybarra, and W. Joines, "Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data ," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 4, 991-1000, 2008.
doi:10.1109/TMTT.2008.919661 Google Scholar
9. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography ," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016 Google Scholar
10. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, No. 12, 1470-1479, 1998.
doi:10.1109/10.730440 Google Scholar
11. Susan, C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antennaarray element ," IEEE Trans. Antennas and Propagat., Vol. 47, No. 5, 783-791, May 1999.
doi:10.1109/8.774131 Google Scholar
12. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions ," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, Aug. 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
13. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, Nov. 1999.
doi:10.1109/75.808040 Google Scholar
14. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887-892, Mar. 2003.
doi:10.1109/TMTT.2003.808630 Google Scholar
15. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887-892, Mar. 2003.
doi:10.1109/TMTT.2003.808630 Google Scholar
16. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627 Google Scholar
17. Li, X., E. J. Bond, B. D. V. Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, Feb. 2005.
doi:10.1109/MAP.2005.1436217 Google Scholar
18. Craddock, I. J., R. Nilavalan, J. Leendertz, A. Preece, and R. Benjamin, "Experimental investigation of real aperture synthetically organised radar for breast cancer detection," IEEE AP-S International Symposium, Washington, DC, 2005.
19. Hernandez-Lopez, M., M. Quintillan-Gonzalez, S. Garcia, A. Bretones, and R. Martin, "A rotating array of antennas for confocal microwave breast imaging," Microw. Opt. Technol. Lett., Vol. 39, No. 4, 307-311, Nov. 2003.
doi:10.1002/mop.11199 Google Scholar
20. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., No. 8, 1690-1705, Aug. 2003.
doi:10.1109/TAP.2003.815446 Google Scholar
21. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. van-Veen, "Microwave imaging via space-time beamforming for the early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1163/156939303322235860 Google Scholar
22. Li, X., S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 2, 1856-1865, Aug. 2002. Google Scholar
23. Li, X., E. J. Bond, S. C. Hagness, B. D. V. Veen, and D. van der Weide, "Three-dimensional microwave imaging via space-time beamforming for breast cancer detection," IEEE AP-S International Symposium and USNC/USRI Radio Science Meeting , San Antonio, TX, USA, Jun. 2002.
24. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, Aug. 2006.
doi:10.1109/TBME.2006.878058 Google Scholar
25. Xie, Y., B. Guo, J. Li, and P. Stoica, "Novel multistatic adaptive microwave imaging methods for early breast cancer detection," EURASIP J. Appl. Si. P., Vol. 2006, No. 91961, 1-13, 2006.
doi:10.1051/epjap:2006101 Google Scholar
26. Gao, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection ," PIERS Online, Vol. 1, No. 3, 350-353, 2005. Google Scholar
27. Craddock, I. J., R. Nilavalan, A. Preece, and R. Benjamin, "Experimental investigation of real aperture synthetically organised radar for breast cancer detection ," IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 179-182, Washington, DC, 2005.
28. Klemm, M., I. J. Craddock, J. A. Leendertz, A. W. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array-experimental results," IEEE Trans. Antennas and Propagat., Vol. 57, No. 6, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856 Google Scholar
29. Nilavalan, R., A. Gbedemah, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," IET Electronic Letters, Vol. 39, No. 25, 1787-1789, Dec. 2003.
doi:10.1049/el:20031183 Google Scholar
30. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection ," PIERS Online, Vol. 1, No. 3, 350-353, 2005. Google Scholar
31. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng., in Press. Google Scholar
32. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
33. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temp, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries ," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
34. Sha, L., E. R. Ward, and B. Stroy, "A review of the dielectric properties of normal and malignant breast tissue," Proceedings of the IEEE SoutheastCon, Columbia, South Carolina, USA, Apr. 2002.
35. Haykin, S., Adaptive Filter Theory, 4th Ed., Prentice Hall, 2001.
36. O'Halloran, M., R. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagnetics Research B, Vol. 18, 1-24, 2009.
doi:10.2528/PIERB09080505 Google Scholar
37. O'Halloran, M., M. Glavin, and E. Jones, "E®ects of fibroglandular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701 Google Scholar
38. Lazebnik, M., M. Okoniewski, J. Booske, and S. Hagness, "Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," Microwave and Wireless Components Letters, IEEE, Vol. 17, No. 12, 822-824, Dec. 2007.
doi:10.1109/LMWC.2007.910465 Google Scholar
39. Gabrie, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
40. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz ," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
41. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiplyand-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, Jun. 2008.
doi:10.1109/TBME.2008.919716 Google Scholar
42. Fear, E. C. and M. Okoniewski, "Confocal microwave imaging for breast tumor detection: Application to a hemispherical breast model," 2002 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1759-1762, Seattle, WA, USA, 2002. Google Scholar
43. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Antenna configurations for ultra wide band radar detection of breast cancer," SPIE BIOS West, Vol. 7169, San Jose, CA, Jan. 2009. Google Scholar
44. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, No. 1, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014 Google Scholar
45. Winters, D. W., E. J. Bond, S. C. Hagness, and B. D. van Veen, "Estimation of the average breast tissue properties at microwave frequencies using a time-domain inverse scattering technique," Proc. EMC, 59-64, Zurich, Feb. 2005. Google Scholar
46. Winters, D. W., E. J. Bond, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique ," IEEE Trans. Antennas and Propagat., Vol. 55, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296 Google Scholar