1. Persson, K., M. Gustafsson, and G. Kristensson, "Reconstruction and visualization of equivalent currents on a radome using an integral representation formulation," Progress In Electromagnetics Research B, Vol. 20, 65-90, 2008.
doi:10.2528/PIERB10012109 Google Scholar
2. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404 Google Scholar
3. Persson, K. and M. Gustafsson, "Reconstruction of equivalent currents using a near-field data transformation --- With radome applications," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602 Google Scholar
4. Ceramic Radomes for Tactical Missile Systems, www.ceradynethermo.com.
5. Shen, Z. J., Z. Zhao, H. Peng, et al. "Formation of tough interlockingmicrostructures in silicon nitrideceramics by dynamic ripening," Nature, Vol. 417, 266-269, 2002.
doi:10.1038/417266a Google Scholar
6. Peterson, I. M. and T. Y. Tien, "Effect of the grain boundary thermal expansion coe±cient on the fracture toughness in silicon nitride," J. Am. Ceram. Soc., Vol. 78, No. 9, 2345-2352, 1995.
doi:10.1111/j.1151-2916.1995.tb08667.x Google Scholar
7. Riley, F. L., "Silicon nitride and related materials," J. Am. Ceram. Soc., Vol. 83, No. 2, 245-265, 2000.
doi:10.1111/j.1151-2916.2000.tb01182.x Google Scholar
8. Pyzik, A. J. and D. R. Beaman, "Microstructure and properties of self-reinforced silicon nitride," J. Am. Ceram. Soc., Vol. 76, No. 11, 2737-2744, 1993.
doi:10.1111/j.1151-2916.1993.tb04010.x Google Scholar
9. Diaz, A., S. Hampshire, J. F. Yang, T. Ohji, and S. Kanzaki, "Comparison of mechanical properties of silicon nitrides with controlled porosities produced by different fabrication routes," J. Am. Ceram. Soc., Vol. 88, No. 3, 698-706, 2005.
doi:10.1111/j.1551-2916.2005.00132.x Google Scholar
10. Shan, S. Y., J. F. Yang, J. Q. Gao, W. H. Zhang, and Z. H. Jin, "Porous silicon nitride ceramics prepared by reduction{nitridation of silica," J. Am. Ceram. Soc., Vol. 88, No. 9, 2594-2596, 2005.
doi:10.1111/j.1551-2916.2005.00444.x Google Scholar
11. Kawai, C. and A. Yamakawa, "Effect of porosity and microstructure on the strength of Si3N4: Designed microstructure for high strength, high thermal shock resistance, and facile machining ," J. Am. Ceram. Soc., Vol. 80, No. 10, 2705-2708, 1997.
doi:10.1111/j.1151-2916.1997.tb03179.x Google Scholar
12. Lam, D. C. C., F. F. Lange, and A. G. Evans, "Mechanical properties of partially dense alumina produced from powder compacts," J. Am. Ceram. Soc., Vol. 77, No. 8, 2113-2117, 1994.
doi:10.1111/j.1151-2916.1994.tb07105.x Google Scholar
13. Nie, X.-C., N. Yuan, L.-W. Li, T. S. Yeo, and Y.-B. Gan, "Fast analysis of electromagnetic transmission through arbitrarily shaped airborne radomes using precorrected-FFT method ," Progress In Electromagnetics Research, Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601 Google Scholar
14. Paris, D. T., "Computer-aided radome analysis," IEEE Trans. Antennas and Propag., Vol. 18, No. 1, 7-15, January 1970.
doi:10.1109/TAP.1970.1139614 Google Scholar
15. Gu, J., Y. Fan, Y. H. Zhang, and D. K. Wu, "Novel 3-D half-mode SICC resonator for microwave and millimeter-wave applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1429-1439, 2009.
doi:10.1163/156939309789476338 Google Scholar
16. Mortensen, A. and S. Suresh, "Functionally graded metals and metal-ceramic composites. 1. Processing," Int. Mater. Rev., Vol. 40, No. 6, 239-265, 1995. Google Scholar
17. Hasar, U. C., O. Simsek, and M. Gulnahar, "Simple procedure to simultaneously evaluate the thickness of and resistive losses in transmission lines from uncalibrated scattering parameter measurements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 999-1010, 2009. Google Scholar
18. Kedar, A. and U. K. Revankar, "Parametric study of flat sandwich multilayer radome," Progress In Electromagnetics Research, Vol. 66, 253-265, 2006.
doi:10.2528/PIER06111202 Google Scholar
19. Kedar, A., K. S. Beenamole, and U. K. Revankar, "Performance appraisal of active phased array antenna in presence of a multilayer flat sandwich radome," Progress In Electromagnetics Research, Vol. 66, 157-171, 2006.
doi:10.2528/PIER06111203 Google Scholar
20. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, May 2008.
21. Fuerholz, P. and A. Murk, "Design of a broadband transition using the constant impedance structure approach," Progress In Electromagnetics Research Letter, Vol. 7, 69-78, 2009.
doi:10.2528/PIERL09010703 Google Scholar
22. Kozakoff, D. J., Analysis of Radome Enclosed Antennas, Artech House, Norwood, MA, 1997.
23. Sunil, S., K. S. Venu, S. M. Vaitheeswaran, and U. Raveendranath, "A modi¯ed expression for determining the wall thickness of monolithic half-wave radomes," Microw. Opt. Techn. Lett., Vol. 30, No. 5, 350-352, 2001.
doi:10.1002/mop.1311 Google Scholar
24. Chen, F., Q. Shen, F. Q. Yan, and L. M. Zhang, "Spark plasma sintering of α-Si3N4 ceramics with MgO-AlPO4 as sintering additives," Mater. Chem. Phys., Vol. 107, 67-71, 2008.
doi:10.1016/j.matchemphys.2007.06.042 Google Scholar
25. Chen, F., Q. Shen, F. Q. Yan, and L. M. Zhang, "Pressureless sintering of α-Si3N4 porous ceramics using H3PO4 pore-forming agent ," J. Am. Ceram. Soc., Vol. 90, No. 8, 2379-2383, 2007.
doi:10.1111/j.1551-2916.2007.01800.x Google Scholar
26. Chen, F., Q. Shen, F. Q. Yan, and L. M. Zhang, "Preparation of zirconium pyrophosphate bonded silicon nitride porous ceramics," Mater. Sci. Technol., Vol. 22, No. 8, 915-918, 2006.
doi:10.1179/174328406X100699 Google Scholar
27. Chou, Y. H., M. J. Jeng, Y. H. Lee, and Y. G. Jan, "Measurement of RF PCB dielectric properties and losses," Progress In Electromagnetics Research Letter, Vol. 4, 139-148, 2008.
doi:10.2528/PIERL08072403 Google Scholar
28. Audone, B., A. Delogu, and P. Morindo, "Radome design and measurements," IEEE Trans. Instrument. Measure., Vol. 37, No. 2, 292-295, 1988.
doi:10.1109/19.6069 Google Scholar
29. Meng, H. F. and W. B. Dou, "A hybrid method for the analysis of radome-enclosed horn antenna," Progress In Electromagnetics Research, Vol. 90, 219-233, 2009.
doi:10.2528/PIER08122502 Google Scholar