Vol. 105
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-03
Electromagnetic Optimal Design and Preparation of Broadband Ceramic Radome Material with Graded Porous Structure
By
Progress In Electromagnetics Research, Vol. 105, 445-461, 2010
Abstract
Silicon nitride (Si3N4) ceramic is a promising ultra-high speed (> 5 mach) broadband (1-18 GHz) radome material because of its excellent high-temperature resistance, good mechanical and dielectric properties. Si3N4 ceramics with A-sandwich wall structure are successfully applied to passive self-direction high transmission efficiency broadband radome (1-18 GHz). In the present study, a novel graded porous wall structure for broadband radome is promoted. The feasibility of using this structure is carried out by a computer aided design for the wall structure based on the microwave equivalent network method. By optimizing the layer number (n), structural coefficient (p), thickness (d) and dielectric constant (ε) of each layer, the power transmission efficiency at 1-18 GHz of graded porous Si3N4 ceramic radome is calculated. Si3N4 ceramics with graded porous structure are then prepared according to the design. The prepared sample exhibits a good graded porous structure with the porosity range from ~ 2% to 63%. The tested power transmission efficiency at 1-18 GHz for the obtained sample matches well with the calculation results, indicating that the graded porous structure is feasible for the broadband radome application.
Citation
Fei Chen, Qiang Shen, and Lianmeng Zhang, "Electromagnetic Optimal Design and Preparation of Broadband Ceramic Radome Material with Graded Porous Structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005
References

1. Persson, K., M. Gustafsson, and G. Kristensson, "Reconstruction and visualization of equivalent currents on a radome using an integral representation formulation," Progress In Electromagnetics Research B, Vol. 20, 65-90, 2008.
doi:10.2528/PIERB10012109

2. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404

3. Persson, K. and M. Gustafsson, "Reconstruction of equivalent currents using a near-field data transformation --- With radome applications," Progress In Electromagnetics Research, Vol. 54, 179-198, 2005.
doi:10.2528/PIER04111602

4. Ceramic Radomes for Tactical Missile Systems, www.ceradynethermo.com.

5. Shen, Z. J., Z. Zhao, H. Peng, et al. "Formation of tough interlockingmicrostructures in silicon nitrideceramics by dynamic ripening," Nature, Vol. 417, 266-269, 2002.
doi:10.1038/417266a

6. Peterson, I. M. and T. Y. Tien, "Effect of the grain boundary thermal expansion coe±cient on the fracture toughness in silicon nitride," J. Am. Ceram. Soc., Vol. 78, No. 9, 2345-2352, 1995.
doi:10.1111/j.1151-2916.1995.tb08667.x

7. Riley, F. L., "Silicon nitride and related materials," J. Am. Ceram. Soc., Vol. 83, No. 2, 245-265, 2000.
doi:10.1111/j.1151-2916.2000.tb01182.x

8. Pyzik, A. J. and D. R. Beaman, "Microstructure and properties of self-reinforced silicon nitride," J. Am. Ceram. Soc., Vol. 76, No. 11, 2737-2744, 1993.
doi:10.1111/j.1151-2916.1993.tb04010.x

9. Diaz, A., S. Hampshire, J. F. Yang, T. Ohji, and S. Kanzaki, "Comparison of mechanical properties of silicon nitrides with controlled porosities produced by different fabrication routes," J. Am. Ceram. Soc., Vol. 88, No. 3, 698-706, 2005.
doi:10.1111/j.1551-2916.2005.00132.x

10. Shan, S. Y., J. F. Yang, J. Q. Gao, W. H. Zhang, and Z. H. Jin, "Porous silicon nitride ceramics prepared by reduction{nitridation of silica," J. Am. Ceram. Soc., Vol. 88, No. 9, 2594-2596, 2005.
doi:10.1111/j.1551-2916.2005.00444.x

11. Kawai, C. and A. Yamakawa, "Effect of porosity and microstructure on the strength of Si3N4: Designed microstructure for high strength, high thermal shock resistance, and facile machining ," J. Am. Ceram. Soc., Vol. 80, No. 10, 2705-2708, 1997.
doi:10.1111/j.1151-2916.1997.tb03179.x

12. Lam, D. C. C., F. F. Lange, and A. G. Evans, "Mechanical properties of partially dense alumina produced from powder compacts," J. Am. Ceram. Soc., Vol. 77, No. 8, 2113-2117, 1994.
doi:10.1111/j.1151-2916.1994.tb07105.x

13. Nie, X.-C., N. Yuan, L.-W. Li, T. S. Yeo, and Y.-B. Gan, "Fast analysis of electromagnetic transmission through arbitrarily shaped airborne radomes using precorrected-FFT method ," Progress In Electromagnetics Research, Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601

14. Paris, D. T., "Computer-aided radome analysis," IEEE Trans. Antennas and Propag., Vol. 18, No. 1, 7-15, January 1970.
doi:10.1109/TAP.1970.1139614

15. Gu, J., Y. Fan, Y. H. Zhang, and D. K. Wu, "Novel 3-D half-mode SICC resonator for microwave and millimeter-wave applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1429-1439, 2009.
doi:10.1163/156939309789476338

16. Mortensen, A. and S. Suresh, "Functionally graded metals and metal-ceramic composites. 1. Processing," Int. Mater. Rev., Vol. 40, No. 6, 239-265, 1995.

17. Hasar, U. C., O. Simsek, and M. Gulnahar, "Simple procedure to simultaneously evaluate the thickness of and resistive losses in transmission lines from uncalibrated scattering parameter measurements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 999-1010, 2009.

18. Kedar, A. and U. K. Revankar, "Parametric study of flat sandwich multilayer radome," Progress In Electromagnetics Research, Vol. 66, 253-265, 2006.
doi:10.2528/PIER06111202

19. Kedar, A., K. S. Beenamole, and U. K. Revankar, "Performance appraisal of active phased array antenna in presence of a multilayer flat sandwich radome," Progress In Electromagnetics Research, Vol. 66, 157-171, 2006.
doi:10.2528/PIER06111203

20. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, May 2008.

21. Fuerholz, P. and A. Murk, "Design of a broadband transition using the constant impedance structure approach," Progress In Electromagnetics Research Letter, Vol. 7, 69-78, 2009.
doi:10.2528/PIERL09010703

22. Kozakoff, D. J., Analysis of Radome Enclosed Antennas, Artech House, Norwood, MA, 1997.

23. Sunil, S., K. S. Venu, S. M. Vaitheeswaran, and U. Raveendranath, "A modi¯ed expression for determining the wall thickness of monolithic half-wave radomes," Microw. Opt. Techn. Lett., Vol. 30, No. 5, 350-352, 2001.
doi:10.1002/mop.1311

24. Chen, F., Q. Shen, F. Q. Yan, and L. M. Zhang, "Spark plasma sintering of α-Si3N4 ceramics with MgO-AlPO4 as sintering additives," Mater. Chem. Phys., Vol. 107, 67-71, 2008.
doi:10.1016/j.matchemphys.2007.06.042

25. Chen, F., Q. Shen, F. Q. Yan, and L. M. Zhang, "Pressureless sintering of α-Si3N4 porous ceramics using H3PO4 pore-forming agent ," J. Am. Ceram. Soc., Vol. 90, No. 8, 2379-2383, 2007.
doi:10.1111/j.1551-2916.2007.01800.x

26. Chen, F., Q. Shen, F. Q. Yan, and L. M. Zhang, "Preparation of zirconium pyrophosphate bonded silicon nitride porous ceramics," Mater. Sci. Technol., Vol. 22, No. 8, 915-918, 2006.
doi:10.1179/174328406X100699

27. Chou, Y. H., M. J. Jeng, Y. H. Lee, and Y. G. Jan, "Measurement of RF PCB dielectric properties and losses," Progress In Electromagnetics Research Letter, Vol. 4, 139-148, 2008.
doi:10.2528/PIERL08072403

28. Audone, B., A. Delogu, and P. Morindo, "Radome design and measurements," IEEE Trans. Instrument. Measure., Vol. 37, No. 2, 292-295, 1988.
doi:10.1109/19.6069

29. Meng, H. F. and W. B. Dou, "A hybrid method for the analysis of radome-enclosed horn antenna," Progress In Electromagnetics Research, Vol. 90, 219-233, 2009.
doi:10.2528/PIER08122502