1. Nikellis, K., N. K. Uzunoglu, Y. Koutsoyannopoulos, and S. Bantas, "Full-wave modeling of stripline structures in multilayer dielectrics," Progress In Electromagnetics Research, Vol. 57, 253-264, 2006.
doi:10.2528/PIER05071302 Google Scholar
2. Wu, B. and L. Tsang, "Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects," Progress In Electromagnetics Research, Vol. 97, 129-139, 2009.
doi:10.2528/PIER09091707 Google Scholar
3. Bernardi, P., R. Cicchetti, G. Pelosi, A. Reatti, S. Selleri, and M. Tatini, "An equivalent circuit for EMI prediction in printed circuit boards featuring a straight-to-bent microstrip line coupling," Progress In Electromagnetics Research B, Vol. 5, 107-118, 2008.
doi:10.2528/PIERB08020502 Google Scholar
4. Saito, S. and K. Kurokawa, "A precision resonance method for measuring dielectric properties of low-loss solid materials in the microwave region," Proceedings of the IRE, Vol. 44, No. 1, 35-42, 1956.
doi:10.1109/JRPROC.1956.274848 Google Scholar
5. Du, S., "A new method for measuring dielectric constant using the resonant frequency of a patch antenna," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 9, 923-931, Sep. 1986.
doi:10.1109/TMTT.1986.1133472 Google Scholar
6. Abdulnour, J., C. Akyel, and K. Wu, "A generic approach for permittivity measurement of dielectric materials using a discontinuity in a rectangular waveguide or a microstrip line," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 5, 1060-1066, 1995.
doi:10.1109/22.382066 Google Scholar
7. Holzman, E. L., "Wideband measurement of the dielectric constant of an FR4 substrate using a parallel-coupled microstrip resonator," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 7, 3127-3130, 2006.
doi:10.1109/22.493931 Google Scholar
8. Huang, J., K. Wu, and C. Akyel, "Characterization of highly dispersive materials using composite coaxial cells, electromagnetic analysis and wideband measurement," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 5, 770-777, 1996. Google Scholar
9. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solid, metals, building materials, and negative-index materia,", NIST Technical Note 1536, Boulder, CO, USA, Dec. 2004.
doi:10.1109/PROC.1986.13432 Google Scholar
10. Afsar, M. N., J. B. Birch, and R. N. Clarke, "The measurement of the properties of materials," Proc. IEEE, Vol. 74, No. 1, 183-199, 1986. Google Scholar
11. Klein, K. and J. C. Santamarina, "Methods for broad-band dielectric permittivity measurements (Soil-Water Mixtures, 5 Hz to 1.3 GHz)," Geotechnical Testing Journal, Vol. 20, No. 2, Jun. 1997.
doi:10.1109/TADVP.2004.841679 Google Scholar
12. Deutsch, A., T. Winkel, G. V. Kopcsay, C. W. Surovic, B. J. Rubin, G. A. Katopis, B. J. Chamberlin, and R. S. Krabbenhoft, "Extraction of εr(f) and tan δ(f) for printed circuit board insulatiors up to 30 GHz using the short-pulse propagation technique," IEEE Trans. Adv. Packag., Vol. 28, No. 1, 4-12, Feb. 2005.
doi:10.1109/TEMC.2008.927923 Google Scholar
13. Zhang, J., M. Y. Koledintseva, J. L. Drewniak, D. J. Pommerenke, R. E. DuBroff, Z. Yang, W. Chen, K. N. Rozanov, G. Antonini, and A. Orlandi, "Reconstruction of dispersive dielectric properties for PCB substrates using a genetic algorithm," IEEE Trans. Electromagn. Compat., Vol. 50, No. 3, 704-714, Aug. 2008. Google Scholar
14. Zhang, J., M. Y. Koledintseva, D. P. Pommerenke, J. L. Drewniak, K. N. Rozanov, G. Antonini, and A. Orlandi, "Extraction of dispersive material parameters using vector network analysers and genetic algorithms," Proc. IEEE Instrumentation and Measurement Technology Conference, 462-467, Sorrento, Italy, Apr. 2006.
doi:10.1103/PhysRevE.65.061510 Google Scholar
15. Hilfer, R., "H-function representation for stretched exponential relaxation and non-Debye susceptibilities in glassy systems," Phys. Rev. E, Vol. 65, 061510, 2002. Google Scholar
16. Jonscher, A. K., Dielectric Relaxation in Solids, Chelsea Dielectric Press, 1983.
doi:10.1109/15.974647
17. Djordjevic, A. R., R. M. Biljic, V. D. Likar-Smiljanic, and T. K. Sarkar, "Wideband frequency-domain characterization of FR-4 and time-domain causality," IEEE Trans. on Electromag. Compat., Vol. 43, No. 4, 662-667, Nov. 2001. Google Scholar
18. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Vol. 1, 309-314, 2004. Google Scholar
19. Koledintseva, M. Y., K. N. Rozanov, A. Orlandi, and J. L. Drewniak, "Extraction of the Lorentzian and Debye parameters of dielectric and magnetic dispersive materials for FDTD modeling," J. Electr. Eng., IEE Slovak, Vol. 53, No. 9, 97-100, 2002. Google Scholar
20. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 256-265, Pergamon Press, 1960.
21. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, 1-93, Wiley, 1999.
doi:10.1002/9780470106280.ch1
22. Haupt, R. L. and D. H. Werner, Genetic Algorithms in Electromagnetics, IEEE Press, Wiley, 2007.
doi:10.2528/PIER09091705
23. Mittal, G. and D. Singh, "Critical analysis of microwave specular scattering response on roughness parameter and moisture content for bare periodic rough surfaces and its retrieval," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
doi:10.2528/PIERB08070904 Google Scholar
24. Liu, B., L. Beghou, L. Pichon, and F. Costa, "Adaptive genetic algorithm based source identification with near-field scanning method," Progress In Electromagnetics Research B, Vol. 9, 215-230, 2008.
doi:10.2528/PIERB08080202 Google Scholar
25. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIER08061806 Google Scholar
26. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER07091901 Google Scholar
27. Xu, Z., H. Li, Q.-Z. Liu, and J.-Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.
doi:10.2528/PIER07031506 Google Scholar
28. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.1029/2007JE002941 Google Scholar
29. Zhang, Z., T. Hagfors, E. Nielsen, G. Picardi, A. Mesdea, and J. J. Plaut, "Dielectric properties of the Martian south polar layered deposits: MARSIS data inversion using Bayesian inference and genetic algorithm," J. Geophys. Res., Vol. 113, E05004, May 2008. Google Scholar
30. Diaz-Morcillo, A., J. Monzo-Cabrera, M. E. Requena-Perez, and A. Lozano-Guerrero, "Application of genetic algorithms in the determination of dielectric properties of materials at microwave frequencies," Lecture Notes in Computer Science (LNCS), Vol. 4528, 608-617, Nature Inspired Problem-Solving Methods in Knowledge Engineering, Springer, Berlin, 2007. Google Scholar
31. Oswald, B., D. Erni, H. R. Benedickter, W. Bachtold, and H. Fluhler, "Dielectric properties of natural materials," IEEE Int. Symp. Antennas and Propagation Society (APS), Vol. 4, 2002-2005, Jun. 21-26, 1998.
doi:10.1109/TEMC.2005.847406 Google Scholar
32. Koledintseva, M. Y., J. L. Drewniak, D. J. Pommerenke, K. N. Rozanov, G. Antonini, and A. Orlandi, "Wide-band Lorentzian media in the FDTD algorithm," IEEE Trans. on Electromag. Compat., Vol. 47, No. 2, 392-398, May 2005. Google Scholar
33. Koul, A., P. K. R. Anmula, M. Y. Koledintseva, J. L. Drewniak, and S. Hinaga, "Improved technique for extracting parameters of low-loss dielectrics on printed circuit boards," Proc. IEEE Symp. Electromag. Compat., 191-196, Austin, TX, Aug. 17-21, 2009. Google Scholar
34. Braunisch, H., X. Gu, A. Camacho-Bragado, and L. Tsang, "Off-chip rough-metal-surface propagation loss modeling and correlation with measurements," IEEE Electronic Components and Technology Conference, 785-791, 2007. Google Scholar
35. Koledintseva, M. Y., A. Koul, P. K. R. Anmula, J. L. Drewniak, S. Hinaga, E. Montgomery, and K. N. Rozanov, "Separating dielectric and conductor loss for rough striplines in printed circuit boards," Progress In Electromagnetics Research Symposium Abstracts, 213, Moscow, Russia, Aug. 18-21, 2009.
doi:10.1109/75.755052 Google Scholar
36. Janezic, M. D. and J. A. Jargon, "Complex permittivity determination from propagation constant measurements," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 2, 76-78, Feb. 1999.
doi:10.1109/22.57336 Google Scholar
37. Baker-Jarvis, J., E. Vanzura, and W. Kissick, "Improved technique for determining complex permittivity with the transmsion/reflection method," IEEE Trans. Microw. Theory Techn., Vol. 38, 1096-1103, Aug. 1990. Google Scholar
38. Hoffman, R. K., Handbook of Microwave Integrated Circuits, Artech House, 1987.
39. Pozar, M., Microwave Engineering, 2nd Ed., Wiley, 1998.
40. Schneider, M. V., "Microstrip lines for microwave integrated circuits," The Bell System Technical Journal, Vol. 48, No. 5-6, 1421-1444, 1969. Google Scholar
41. Gardiol, F. and K. Chang, Microstrip Circuits, 33-58, Wiley, 1994.
doi:10.1109/TMTT.1977.1129179
42. Wheeler, H. A., "Transmission line properties of a strip on a dielectric sheet on a plane," IEEE Trans. Microw. Theory Tech., Vol. 25, No. 8, 631-647, 1977. Google Scholar
43. Wadell, B. C., Transmission Line Design Handbook, 129-131, Artech House, 1991.
44. Hockanson, D. M., J. L. Drewniak, T. H. Hubing, and T. P. van Doren, "FDTD modeling of thin wires simulating common-mode radiation from structures with attached cables," Proc. IEEE Symp. Electromag. Compat., 168-173, 1Atlanta, GA, USA, Aug. 1995. Google Scholar
45. Wang, C., J. L. Drewniak, and M. Li, "FDTD modeling of skin effect," Proc. IEEE Symp. Electromag. Compat., 246-249, Beijing, China, May 2002. Google Scholar
46. Mongia, R., I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, 83-90, Artech House, 1999.
47. Zhang, J., J. L. Drewniak, D. P. Pommerenke, R. E. DuBroff, Z. Yang, W. Cheng, J. Fisher, and S. Camerlo, "Signal link-path characterization up to 20 GHz based on a stripline structure," Proc. of the 2006 IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 356-361, Portland, OR, Aug. 2006. Google Scholar
48. Clemens, M., S. Drobny, and T. Weiland, "Time integration of slowly-varying electromagnetic field problems using the finite integration technique," Scientific Computing in Electrical Engineering, U. van Reinen, M. Guenther, and Hecht (eds.), 63-70, Springer Verlag, 2001. Google Scholar