Vol. 102
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-04-05
GPU Accelerated Unconditionally Stable Crank-Nicolson FDTD Method for the Analysis of Three-Dimensional Microwave Circuits
By
Progress In Electromagnetics Research, Vol. 102, 381-395, 2010
Abstract
The programmable graphics processing unit (GPU) is employed to accelerate the unconditionally stable Crank-Nicolson finite-difference time-domain (CN-FDTD) method for the analysis of microwave circuits. In order to efficiently solve the linear system from the CN-FDTD method at each time step, both the sparse matrix vector product (SMVP) and the arithmetic operations on vectors in the bi-conjugate gradient stabilized (Bi-CGSTAB) algorithm are performed with multiple processors of the GPU. Therefore, the GPU based BI-CGSTAB algorithm can significantly speed up the CN-FDTD simulation due to parallel computing capability of modern GPUs. Numerical results demonstrate that this method is very effective and a speedup factor of 10 can be achieved.
Citation
Kan Xu, Zhenhong Fan, Da-Zhi Ding, and Ru-Shan Chen, "GPU Accelerated Unconditionally Stable Crank-Nicolson FDTD Method for the Analysis of Three-Dimensional Microwave Circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 8, 302-307, Aug. 1966.        Google Scholar

2. Sun, G. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving the two-dimensional Maxwell's equations," IEE Electron. Lett., Vol. 39, No. 7, 595-597, Apr. 2003.        Google Scholar

3. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TE waves," EEE Trans. Antennas Propagat., Vol. 52, No. 11, 2963-2972, Nov. 2004.        Google Scholar

4. Yang, Y., R. S. Chen, D. X. Wang, , and E. K. N. Yung, "Unconditionally stable Crank-Nicolson finite-difference time-domain method for simulation of 3-D microwave circuits," IEE Microwaves, Antennas & Propagation, Vol. 1, No. 4, 937-942, Aug. 2007.        Google Scholar

5. Rouf, H. K., F. Costen, S. G. Garcia, and S. Fujino, "On the solution of 3-D frequency dependent Crank-Nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, 2009.        Google Scholar

6. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Statist. Comput., Vol. 13, No. 2, 631-644, Mar. 1992.        Google Scholar

7. Zhang, S. L., "GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems," SIAM J. Sci. Comput., Vol. 18, No. 2, 537-551, Mar 1997.        Google Scholar

8. Owens, J. D., M. Houston, et al. "GPU computing," Proceedings of the IEEE, Vol. 96, No. 5, 879-899, May 2008.        Google Scholar

9. Krakiwsky, S. E., L. E. Turner, and M. M. Okoniewski, "Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU)," IEEE MTT-S Int. Microwave Symp. Digest, 1033-1036, 2004.        Google Scholar

10. Inman, M. J. and A. Z. Elsherbeni, "Programming video cards for computational electromagnetics applications," Antennas Propag. Mag., Vol. 47, 71-78, Dec. 2005.        Google Scholar

11. Zainud-Deen, S. H.., E. El-Deen, et al. "Electromagnetic scattering using gpu-based finite difference frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.        Google Scholar

12. Tao, Y. B., H. Lin, and H. J. Bao, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008.        Google Scholar

13. Peng, S. X. and Z. P. Nie, "Acceleration of the method of moments calculations by using graphics processing units," IEEE Trans. Antennas and Propagation, Vol. 56, No. 7, 2130-2133, Jul. 2008.        Google Scholar

14. NVIDIA Corporation, , NVIDIA CUDA Programming Guide,1.1 Ed., , Nov. 2007.

15. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagmetic-field equations," IEEE Trans. Electromagnetic Compatibility, Vol. 23, No. 4, 377-382, Nov. 1981.        Google Scholar

16. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, 2007.

17. Bracken, J. E., D. K. Sun, and Z. J. Cendes, "S-domain methods for simultaneous time and frequency characterization of electromagnetic devices," IEEE Trans. Microwave Theory Tech., Vol. 46, 1277-1290, Sep. 1998.        Google Scholar

18. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microwave Theory Tech., Vol. 38, 849-857, Jul. 1990.        Google Scholar

19. Maricevic, Z. A. and T. K. Sarkar, "Analysis and measurements of arbitrarily shaped open microstrip structures," Progress In Electromagnetics Research, Vol. 15, 253-301, 1997.        Google Scholar