1. Yee, K. S., "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 8, 302-307, Aug. 1966. Google Scholar
2. Sun, G. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving the two-dimensional Maxwell's equations," IEE Electron. Lett., Vol. 39, No. 7, 595-597, Apr. 2003. Google Scholar
3. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TE waves," EEE Trans. Antennas Propagat., Vol. 52, No. 11, 2963-2972, Nov. 2004. Google Scholar
4. Yang, Y., R. S. Chen, D. X. Wang, , and E. K. N. Yung, "Unconditionally stable Crank-Nicolson finite-difference time-domain method for simulation of 3-D microwave circuits," IEE Microwaves, Antennas & Propagation, Vol. 1, No. 4, 937-942, Aug. 2007. Google Scholar
5. Rouf, H. K., F. Costen, S. G. Garcia, and S. Fujino, "On the solution of 3-D frequency dependent Crank-Nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, 2009. Google Scholar
6. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Statist. Comput., Vol. 13, No. 2, 631-644, Mar. 1992. Google Scholar
7. Zhang, S. L., "GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems," SIAM J. Sci. Comput., Vol. 18, No. 2, 537-551, Mar 1997. Google Scholar
8. Owens, J. D., M. Houston, et al. "GPU computing," Proceedings of the IEEE, Vol. 96, No. 5, 879-899, May 2008. Google Scholar
9. Krakiwsky, S. E., L. E. Turner, and M. M. Okoniewski, "Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU)," IEEE MTT-S Int. Microwave Symp. Digest, 1033-1036, 2004. Google Scholar
10. Inman, M. J. and A. Z. Elsherbeni, "Programming video cards for computational electromagnetics applications," Antennas Propag. Mag., Vol. 47, 71-78, Dec. 2005. Google Scholar
11. Zainud-Deen, S. H.., E. El-Deen, et al. "Electromagnetic scattering using gpu-based finite difference frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009. Google Scholar
12. Tao, Y. B., H. Lin, and H. J. Bao, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008. Google Scholar
13. Peng, S. X. and Z. P. Nie, "Acceleration of the method of moments calculations by using graphics processing units," IEEE Trans. Antennas and Propagation, Vol. 56, No. 7, 2130-2133, Jul. 2008. Google Scholar
14. NVIDIA Corporation, , NVIDIA CUDA Programming Guide,1.1 Ed., , Nov. 2007.
15. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagmetic-field equations," IEEE Trans. Electromagnetic Compatibility, Vol. 23, No. 4, 377-382, Nov. 1981. Google Scholar
16. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, 2007.
17. Bracken, J. E., D. K. Sun, and Z. J. Cendes, "S-domain methods for simultaneous time and frequency characterization of electromagnetic devices," IEEE Trans. Microwave Theory Tech., Vol. 46, 1277-1290, Sep. 1998. Google Scholar
18. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microwave Theory Tech., Vol. 38, 849-857, Jul. 1990. Google Scholar
19. Maricevic, Z. A. and T. K. Sarkar, "Analysis and measurements of arbitrarily shaped open microstrip structures," Progress In Electromagnetics Research, Vol. 15, 253-301, 1997. Google Scholar