1. Li, H., C. Xu, N. Srivastava, and K. Banerjee, "Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects," IEEE Trans. Electron. Device, Vol. 56, No. 9, 1799-1821, Sep. 2009.
doi:10.1109/TED.2009.2026524 Google Scholar
2. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Trans. Nanotech., 55-58, Mar. 2003.
doi:10.1109/TNANO.2003.808503 Google Scholar
3. Naeemi, A. and J. D. Meindl, "Compact physical model for multiwall carbon nanotube interconnect," IEEE Trans. Electron. Device Lett., Vol. 27, No. 5, 338-340, May 2006.
doi:10.1109/LED.2006.873765 Google Scholar
4. Li, H., W. Y. Yin, K. Banerjee, and J. F. Mao, "Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects ," IEEE Trans. Electron. Device, Vol. 55, No. 6, 1328-1337, Jun. 2008.
doi:10.1109/TED.2008.922855 Google Scholar
5. Maffucci, A., G. Miano, and F. Villone, "A new circuit model for carbon nanotube interconnects with diameter-dependent parameters," IEEE Trans. Nanotech., Vol. 8, No. 3, 345-354, May 2009.
doi:10.1109/TNANO.2008.2010545 Google Scholar
6. Nieuwoudt, A. and Y. Massoud, "Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques," IEEE Trans. Nanotech., Vol. 5, No. 6, 758-765, Nov. 2006.
doi:10.1109/TNANO.2006.883480 Google Scholar
7. Haruehanroengra, S. and W. Wang, "Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications," IEEE Electron. Device Lett., Vol. 28, No. 8, 756-759, Aug. 2007.
doi:10.1109/LED.2007.901584 Google Scholar
8. Wang, W., S. Haruehantoengra, L. Shang, and M. Liu, "Inductance of mixed carbon nanotube bundles," Micro. & Nano. Lett., Vol. 2, No. 2, 35-39, Jun. 2007.
doi:10.1049/mnl:20070027 Google Scholar
9. Rossi, D., J. M. Cazeaux, C. Metra, and F. Lombardi, "Modeling crosstalk effects in CNT bus architectures," IEEE Trans. Nanotech., Vol. 6, No. 2, 133-145, Mar. 2007.
doi:10.1109/TNANO.2007.891814 Google Scholar
10. Pu, S. N., W. Y. Yin, J. F. Mao, and Q. H. Liu, "Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects," IEEE Trans. Electron. Devices, Vol. 55, No. 4, 560-568, Apr. 2009.
doi:10.1109/TED.2009.2014429 Google Scholar
11. Naeemi, A., R. Sarvari, and J. D. Meindl, "Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) ," IEEE Electron. Device Lett., Vol. 26, No. 2, 84-86, Feb. 2005.
doi:10.1109/LED.2004.841440 Google Scholar
12. Naeemi, A. and J. D. Meindl, "Design and performance modeling for single-walled carbon nanotubes as local, semi-global, and global interconnects in gigascale integrated systems," IEEE Trans. Electron. Devices, Vol. 54, No. 1, 26-37, 2007.
doi:10.1109/TED.2006.887210 Google Scholar
13. Srivastava, N., H. Li, F. Kreupl, and K. Banerjee, "On the applicability of single-walled carbon nanotubes as VLSI interconnects," IEEE Trans. Nanotech., Vol. 8, No. 4, 542-559, Jul. 2009.
doi:10.1109/TNANO.2009.2013945 Google Scholar
14. Fathi, D. and B. Forouzandeh, "A novel approach for stability analysis in carbon nanotube interconnects," IEEE Electron. Device Lett., Vol. 30, No. 5, 475-477, May 2009.
doi:10.1109/LED.2009.2017388 Google Scholar
15. Chen, W. C., W. Y. Yin, J. Lei, and Q. H. Liu, "Electrothermal characterization of single-walled carbon nanotube (SWCNT) interconnect arrays," IEEE Trans. Nanotech., Vol. 8, No. 6, 718-728, 2009.
doi:10.1109/TNANO.2009.2019725 Google Scholar
16. Patil, N., J. Deng, A. Lin, H. S. P. Wong, and S. Mitra, "Design methods for misaligned and mispositioned carbon-nanotube immune circuits," IEEE Trans. Computer-aided Design of Integrated Circuits and Systems, Vol. 27, No. 10, 1725-1746, Oct. 2008.
doi:10.1109/TCAD.2008.2003278 Google Scholar
17. Close, G. F. and H. S. P. Wong, "Assembly and electrical characterization of multiwall carbon nanotube interconnects," IEEE Trans. Nanotech., Vol. 7, No. 5, 596-600, Sep. 2008.
doi:10.1109/TNANO.2008.927373 Google Scholar
18. Patil, N., A. Lin, E. R. Myers, K. Ryu, A. Badmaev, C. W. Zhou, and H. S. P. Wong, "Wafer-scale growth and transfer of aligned single-walled carbon nanotubes," IEEE Trans. Nanotech., Vol. 8, No. 4, 498-504, Jul. 200.
doi:10.1109/TNANO.2009.2016562 Google Scholar
19. Lin, A., N. Patil, H. Wei, S. Mitra, and H. S. P. Wong, "ACCNT-a metallic-CNT-tolerant design methodology for carbon-nanotube VLSI: concepts and experimental demonstration," IEEE Trans. Electron. Device, Vol. 56, No. 12, 2969-2978, Dec. 2009.
doi:10.1109/TED.2009.2033168 Google Scholar
20. Banerjee, K. and A. Mehrotra, "Analysis of on-chip inductance effects for distributed RLC interconnects," IEEE Trans. Computeraided Designs of Integrated Circuits and Systems, Vol. 21, No. 5, 904-915, Aug. 2002.
doi:10.1109/TCAD.2002.800459 Google Scholar
21. Davis, J. A. and J. D. Meindl, "Compact distributed RLC interconnect models --- Part I: Single line transient, time delay, and overshoot expressions," IEEE Trans. Electron. Device, Vol. 47, No. 11, 2068-2077, Nov. 2000.
doi:10.1109/16.877168 Google Scholar
22. Davis, J. A. and J. D. Meindl, "Compact distributed RLC interconnect models --- Part II: Coupled line transient expressions and peak crosstalk in multilevel networks," IEEE Trans. Electron. Device, Vol. 47, No. 11, 2078-2087, Nov. 2000.
doi:10.1109/16.877169 Google Scholar
23. Venkatesan, R., J. A. Davis, and J. D. Meindl, "Compact distributed RLC interconnect models --- Part III: Transients in single and coupled lines with capacitive load termination," IEEE Trans. Electron. Device, Vol. 50, No. 4, 1081-1093, Apr. 200.
doi:10.1109/TED.2003.812507 Google Scholar
24. Venkatesan, R., J. A. Davis, and J. D. Meindl, "Compact distributed RLC interconnect models --- Part IV: Unified models for time delay, crosstalk, and repeater insertion," IEEE Trans. Electron. Device, Vol. 50, No. 4, 1094-1102, Apr. 2003.
doi:10.1109/TED.2003.812509 Google Scholar
25. Fathi, D. and B. Forouzandeh, "Time domain analysis of carbon nanotube interconnects based on distributed RLC model," Nano., Vol. 4, No. 1, 13-21, 2009.
doi:10.1142/S1793292009001484 Google Scholar
26. Fathi, D., Forouzandeh, S. Mohajerzadeh, and R. Sarvari, "Accurate analysis of carbon nanotube interconnects using transmission line model," Micro & Nano Lett., Vol. 4, No. 2, 116-121, 2009.
doi:10.1049/mnl.2009.0045 Google Scholar
27. Davis, J. A., A hierarchy of interconnect limits and opportunities for gigascale integration (GSI) , Ph.D. dissertation, Univ. Georgia Institute of Technology, Mar. 1999.
28. Sarto, M. S., A. Tamburrano, and M. D'Amore, "New electron-waveguide-based modeling for carbon nanotube interconnects," IEEE Trans. Nanotechnology, Vol. 8, No. 2, 214-225, 2008.
doi:10.1109/TNANO.2008.2010253 Google Scholar
29. Raguraman, V., Multilevel interconnect architectures for gigascale integration (GSI), Ph.D. dissertation, Georgia Institute of Technology, Feb. 2003.
30. Khalaj-Amirhosseini, M., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502 Google Scholar
31. Chiu, C.-N. and I.-T. Chiang, "A fast approach for simulating long-time response of high-speed dispersive and lossy interconnects terminated with nonlinear loads," Progress In Electromagnetics Research, Vol. 91, 153-171, 2009.
doi:10.2528/PIER09021502 Google Scholar
32. Wang, Y. J., W. J. Koh, C. K. Lee, and K. Y. See, "Electromagnetic coupling analysis of transient signal through slots or apertures perforated in a shielding metallic enclosure using FDTD methodology," Progress In Electromagnetics Research, Vol. 36, 247-264, 2002.
doi:10.2528/PIER02021701 Google Scholar