1. Moschovitis, C. G., K. T. Karakatselos, E. G. Papkelis, H. T. Anastassiu, I. C. Ouranos, A. Tzoulis, and P. V. Frangos, "Scattering of electromagnetic waves from a rectangular plate using an enhanced stationary phase method approximation," IEEE Trans. Antennas and Propagat., Vol. 58, No. 1, 233-238, Jan. 2010.
doi:10.1109/TAP.2009.2024015 Google Scholar
2. Papkelis, E. G., I. Psarros, I. C. Ouranos, C. G. Moschovitis, K. T. Karakatselos, E. Vagenas, H. T. Anastassiu, and P. V. Frangos, "A radio coverage prediction model in wireless communication systems based on physical optics and the physical theory of diffraction," IEEE Antennas and Propagation Magazine, Vol. 49, No. 2, 156-165, Apr. 2007.
doi:10.1109/MAP.2007.376622 Google Scholar
3. Papkelis, E., H. Anastassiu, and P. Frangos, "A time efficient near field scattering method applied to radio-coverage simulation in urban microcellular environments," IEEE Trans. Antennas and Propagat., Vol. 56, No. 10, 3359-3363, Oct. 2008.
doi:10.1109/TAP.2008.929516 Google Scholar
4. Jenn, D. C., Radar and Laser Cross Section Engineering, 29-33, American Institute of Aeronautics and Astronautics, Inc., 1995.
5. Balanis, C. A., Antenna Theory: Analysis and Design, 922-926, John Wiley & Sons, 1996.
6. Graeme, L. J., Geometrical Theory of Diffraction for Electromagnetic Waves, 30-42, 61, 90 and 117-123, UK, IEE, 1976.
7. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross-section, 2nd Edition, Artech House, 1993.
8. Sirovich, L., Techniques of Asymptotic Analysis, 136-147, New York, Springer, 1971.
9. Borovikov, V. A., Uniform Stationary Phase Method, London, UK, IEE, 1994.
10. Jones, D. S. and M. Kline, "Asymptotic expansion of multiple integrals and the method of stationary phase," J. Math. Phys., Vol. 37, 1-28, 1958. Google Scholar
11. Silver, S., Microwave Antenna Theory and Design, 119-122, McGraw-Hill, 1949.
12. Stiegel, K. M., et al. "Bistatic RCS of surfaces of revolution," J. Appl. Phys., Vol. 26, 297-305, 1955.
doi:10.1063/1.1721981 Google Scholar
13. Born, M. and E. Wolf, Principles of Optics, 750-754, Pergamon Press, 1959.
14. Chako, N., "Asymptotic expansion of double and multiple integrals," J. Inst. Math. Applic., Vol. 27, 372-422, 1965.
doi:10.1093/imamat/1.4.372 Google Scholar
15. Bleinstein, N. and R. Handelsman, "Uniform asymptotic expansions of double integrals," J. Math. Anal. Appl., Vol. 27, 434-453, 1969.
doi:10.1016/0022-247X(69)90060-2 Google Scholar
16. Kanatas, A. G., I. D. Kountouris, G. B. Kostaras, and P. Constantinou, "A UTD propagation model in urban microcellular environments," IEEE Transactions on Vehicular Technology, Vol. 46, No. 1, 185-193, Feb. 1997.
doi:10.1109/25.554751 Google Scholar
17. Wilton, D. R., S. M. Rao, and A. W. Glisson, "Electromagntic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
18. Song, J., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855 Google Scholar
19. Eibert, T. F., "A diagonalized multilevel fast multipole method with spherical harmonics expansion of the k-space integrals," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 814-817, Feb. 2005.
doi:10.1109/TAP.2004.841310 Google Scholar
20. Eibert, T. and V. Hansen, "Calculation of unbounded field problems in free space by a 3D FEM/BEM-hybrid approach," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 1, 61-78, Jan. 1996.
doi:10.1163/156939396X00216 Google Scholar
21. Tzoulis, A. and T. F. Eibert, "A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects," IEEE Trans. Antennas Propagat., Vol. 53, No. 10, 3358-3366, Oct. 2005.
doi:10.1109/TAP.2005.856348 Google Scholar
22. Tzoulis, A. and T. F. Eibert, "Efficient electromagnetic near-field computation by the multilevel fast multipole method employing mixed near-field/far-field translations," IEEE Antennas Wireless Propag. Lett., Vol. 4, 449-452, 2005.
doi:10.1109/LAWP.2005.860195 Google Scholar
23. Tzoulis, A., T. Vaupel, and T. F. Eibert, "Ray optical electromagnetic far-field scattering computations using planar near-field scanning techniques," IEEE Trans. Antennas Propagat., Vol. 56, No. 2, 461-468, Feb. 2008.
doi:10.1109/TAP.2007.915436 Google Scholar
24. Jenn, D. C., Radar and Laser Cross Section Engineering, 69-76, 2nd Edition, American Institute of Aeronautics and Astronautics, Inc., 2005.
25. Brelet, Y. and C. Bourlier, "SPM numerical results from an effective surface impedance for a one-dimensional perfectly-conducting rough sea surface," Progress In Electromagnetics Research, Vol. 81, 413-436, 2008.
doi:10.2528/PIER07121703 Google Scholar
26. Zhang, Y., Y. E. Yang, H. Braunisch, and J. A. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MoM technique," Progress In Electromagnetics Research, Vol. 22, 315-335, 1999.
doi:10.2528/PIER98112506 Google Scholar