Vol. 105
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-07
Microwave Scattering and Absorption by a Multilayered Lossy Metamaterial --- Glass Cylinder
By
Progress In Electromagnetics Research, Vol. 105, 103-118, 2010
Abstract
Here we present the rigorous electrodynamical solution of diffraction problem about the microwave scattering by a multilayered cylinder. The number and thickness of layers is not limited. We offer the solution when the central core of multilayered cylinder can be made of different isotropic materials as a metamaterial, a ceramic matter or a semiconductor as well as of a perfect metal. The isotropic coated layers can be of strongly lossy materials. The signs of the complex permittivity and the complex permeability can be negative or positive in different combinations. Here we present dependencies of the scattered power of the incident perpendicularly and parallel polarized microwaves by the metamaterial-glass cylinder on signs of metamaterial permittivity as well as permeability. Here are also presented the glass layer absorbed power and the metamaterial core absorbed power dependent on the hypothetic metamaterial permittivity and permeability signs at the wide range frequencies 1-120 GHz. The metamaterial core of cylinder has a radius equal to 0.0018 m and the thickness of the coated acrylic-glass layer is 0.0002 m. We have found some conditions when the scattered-power has minimal values and the absorbed power by the coated acrylic glass layer is constant in a very wide frequency range. We have discovered that the glass layer absorbed power decreases with increasing of the frequency at the range 1-120 GHz for both microwave polarizations.
Citation
Juozas Bucinskas, Liudmila Nickelson, and Viktoras Shugurovas, "Microwave Scattering and Absorption by a Multilayered Lossy Metamaterial --- Glass Cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711
References

1. Yan, W.-Z., Y. Du, H. Wu, D. W. Liu, and B.-I. Wu, "EM scattering from a long dielectric circular cylinder," Progress In Electromagnetics Research, Vol. 85, 39-67, 2008.
doi:10.2528/PIER08081106

2. Yan, W.-Z., Y. Du, Z. Li, E. Chen, and J. Shi, "Characterization of the validity region of the extended T-matrix method for scattering from dielectric cylinders with finite length," Progress In Electromagnetics Research, Vol. 96, 309-328, 2009.
doi:10.2528/PIER09083101

3. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayered cylindrical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.
doi:10.2528/PIER07090305

4. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary con¯guration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

5. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502

6. Qiu, C.-W., S. Zouhdi, and Y. L. Geng, "Shifted resonances in coated metamaterial cylinders: Enhanced backscattering and near-field effects," Physical Review E, Vol. 77, 046604-(1-9), 2008.
doi:10.1103/PhysRevE.77.046604

7. Qiu, C.-W., H.-Y. Yao, S.-N. Burokur, S. Zouhdi, and L.-W. Li, "Electromagnetic scattering properties in a multilayered metamaterial cylinder ," IEICE Transactions Commun. E Series B, Vol. 90, No. 9, 2423-2429, 2007.
doi:10.1093/ietcom/e90-b.9.2423

8. Ahmed, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated PEMC circular cylinder," Progress In Electromagnetics Research, Vol. 92, 91-102, 2009.
doi:10.2528/PIER09030503

9. Nickelson, L. and V. Shugurov, Singular Integral Equations' Methods for the Analysis of Microwave Structures, VSP Brill Academic Publishers, Leiden-Boston, 2005.

10. Rogier, H., "A new hybrid FDTD-BIE approach to model electromagnetic scattering problems," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 3, 138-140, 1998.
doi:10.1109/75.661141

11. Sharkawy, M. A., V. Demir, and A. Z. Elsherbeni, "Plane wave scattering from three dimensional multiple objects using the iterative multiregion technique based on the FDFD method," IEEE Trans. on AP, Vol. 54, No. 2, 666-673, 2006.

12. Penciu, R. S., M. Kafesaki, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Theoretical study of left-handed behavior of composite metamaterials," Photonics Nanostructures Fundamentals and Applications, Vol. 4, No. 1, 12-16, Elsevier, 2006.
doi:10.1016/j.photonics.2005.11.001

13. Kim, K. Y., "Comparative analysis of guided modal properties of double-positive and double-negative metamaterial slab waveguides," Radioengineering, Vol. 18, No. 2, 117-123, 2009.

14. Pratibha, R., K. Park, I. Smalyukh, and W. Park, "Tunable optical metamaterial based on liquid crystal-gold nanosphere composite ," Optics. Express, Vol. 17, No. 22, 19459-19469, 2009.
doi:10.1364/OE.17.019459

15. Zhang, F., Q. Zhao, D. P. Gaillot, X. Zhao, and D. Lippens, "Numerical investigation of metamaterials infiltrated by liquid crystal," Journal of the Optical Society of America B, Vol. 25, No. 11, 1920-1925, 2008.
doi:10.1364/JOSAB.25.001920

16. Du, B., J. Zhou, and L. F. Hao, "Fabrication and properties of meta-materials based on multilayer ceramic structure," Journal of Electroceramics, Vol. 21, No. 1-4, 165-169, 2008.
doi:10.1007/s10832-007-9113-7

17. Schuller, J. A., R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles," Physical Review Letters, Vol. 99, 107401-(1-4), 2007.

18. Adenot-Engelvin, A. L., C. Dudek, P. Toneguzzo, and O. Acher, "Microwave properties of ferromagnetic composites and metamaterials," Journal of the European Ceramic Society, Vol. 27, No. 2-3, 1029-1033, 2007.
doi:10.1016/j.jeurceramsoc.2006.05.087

19. Vazquez, M. and A.-L. Adenot-Engelvin, "Glass-coated amorphous ferromagnetic microwires at microwave frequencies," Journal of Magnetism and Magnetic Materials, Vol. 321, No. 14, 2066-2073, 2009.
doi:10.1016/j.jmmm.2008.10.040