1. Knight, J. C., T. A. Birks, P. S. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett., Vol. 21, 1547-1549, 1996.
doi:10.1364/OL.21.001547 Google Scholar
2. Birks, T. A., J. C. Knight, and . S. J. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett., Vol. 22, 961-963, 1997.
doi:10.1364/OL.22.000961 Google Scholar
3. Knight, J. C., J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science, Vol. 282, 1476-1478, 1998.
doi:10.1126/science.282.5393.1476 Google Scholar
4. Knight, J. C. and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science, Vol. 296, 276-277, 2002.
doi:10.1126/science.1070033 Google Scholar
5. Knight, J. C., "Photonic crystal fibers," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940 Google Scholar
6. Shen, G.-F., X.-M. Zhang, H. Chi, and X.-F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202 Google Scholar
7. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309 Google Scholar
8. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804 Google Scholar
9. Chau, Y.-F., C.-Y. Liu, H.-H. Yeh, and D. P. Tsai, "A comparative study of high birefringence and low confinement loss photonic crystal ¯ber employing elliptical air holes in fiber cladding with tetragonal lattice," Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010.
doi:10.2528/PIERB10042405 Google Scholar
10. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russel, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.
doi:10.1364/OL.25.001325 Google Scholar
11. Ademgil, H. and S. Haxha, "Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses," J. Lightwave Technol., Vol. 26, 441-448, 2008.
doi:10.1109/JLT.2007.912508 Google Scholar
12. Hansen, T. P., J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 13, 588-590, 2001.
doi:10.1109/68.924030 Google Scholar
13. Sapulak, M., G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, "Experimental and theoretical investigations of birefringent holey fibers with a triple defect," Appl. Opt., Vol. 44, 2652-2658, 2005.
doi:10.1364/AO.44.002652 Google Scholar
14. Anthkowiak, M., R. Kotynski, T. Nasilowski, P. Lesiak, J.Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A: Pure Appl. Opt., Vol. 7, 763-766, 2005.
doi:10.1088/1464-4258/7/12/009 Google Scholar
15. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightw. Technol., Vol. 25, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114 Google Scholar
16. Steel, M. J. and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett., Vol. 26, 229-231, 2001.
doi:10.1364/OL.26.000229 Google Scholar
17. Steel, M. J. and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonics crystal fibers," J. Lightwave Technol., Vol. 19, 495-503, 2001.
doi:10.1109/50.920847 Google Scholar
18. Yue, Y., G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett., Vol. 32, 469-471, 2007.
doi:10.1364/OL.32.000469 Google Scholar
19. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040 Google Scholar
20. Agrawal, A., N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, "Golden spiral photonic crystal fiber: Polarization and dispersion properties," Opt. Lett., Vol. 33, 2716-2718, 2008.
doi:10.1364/OL.33.002716 Google Scholar
21. Shen, L. P., W. P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightwave Technol., Vol. 21, 1644-1651, 2003.
doi:10.1109/JLT.2003.814397 Google Scholar
22. Ferrando, A., E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett., Vol. 25, 790-792, 2000.
doi:10.1364/OL.25.000790 Google Scholar
23. Ferrando, A., E. Silvestre, P. Andres, J. Miret, and M. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express, Vol. 9, 687-697, 2001.
doi:10.1364/OE.9.000687 Google Scholar
24. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2003.
doi:10.1364/OE.11.000843 Google Scholar
25. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express, Vol. 13, 3728-3736, 2005.
doi:10.1364/OPEX.13.003728 Google Scholar
26. Gerome, F., J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett., Vol. 29, 2725-2727, 2004.
doi:10.1364/OL.29.002725 Google Scholar
27. Huttunen, A. and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area ," Opt. Express, Vol. 13, 627-635, 2005.
doi:10.1364/OPEX.13.000627 Google Scholar
28. Varshney, S. K., T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express, Vol. 14, 3528-3540, 2006.
doi:10.1364/OE.14.003528 Google Scholar
29. Yang, S., Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, Vol. 14, 3015-3023, 2006.
doi:10.1364/OE.14.003015 Google Scholar
30. Ju, J., W. Jin, and M. S. Demokan, "Design of single-polarization single mode photonics crystal fibers," J. Lightwave Technol., Vol. 24, 825-830, 2001. Google Scholar
31. Saitoh, K. and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 15, 1384-1340, 2003.
doi:10.1109/LPT.2003.818215 Google Scholar
32. Kubota, H., S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 16, 182-184, 2004.
doi:10.1109/LPT.2003.819415 Google Scholar
33. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.
doi:10.1364/OE.15.015365 Google Scholar
34. Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett., Vol. 28, 393-395, 2003.
doi:10.1364/OL.28.000393 Google Scholar
35. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-823, 2003.
doi:10.1364/OE.11.000818 Google Scholar
36. Folkenberg, J., M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, "Polarization maintaining large mode area photonic crystal fiber ," Opt. Express, Vol. 12, 956-960, 2004.
doi:10.1364/OPEX.12.000956 Google Scholar
37. Dobb, H., K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Eletron. Lett., Vol. 40, 657-658, 2004.
doi:10.1049/el:20040433 Google Scholar
38. Dong, X. and H. Y. Tam, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer," Appl. Phys. Lett., Vol. 90, 151113-2007.
doi:10.1063/1.2722058 Google Scholar
39. Wadsworth, W. J., J. C. Knight, W. H. Reewes, P. S. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Eletron. Lett., Vol. 36, 1452-1253, 2000.
doi:10.1049/el:20000942 Google Scholar
40. Liu, X., X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, "Swithable and tunable multiwavelength erbium-doped ¯ber laser with ¯ber Bragg grating and photonic crystal fiber ," IEEE Photon. Technol. Lett., Vol. 17, 1626-1628, 2005.
doi:10.1109/LPT.2005.851024 Google Scholar
41. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
doi:10.1002/lapl.200710003 Google Scholar
42. Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson, "Nonlinearity in holey optical fbers: Measurement and future opportunities," Opt. Lett., Vol. 24, 1395-1397, 1999.
doi:10.1364/OL.24.001395 Google Scholar
43. Zhu, Z. and T. G. Brown, "Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber," Opt. Express, Vol. 12, 791-796, 2004.
doi:10.1364/OPEX.12.000791 Google Scholar
44. Zhu, Z. and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B, Vol. 21, 249-257, 2004.
doi:10.1364/JOSAB.21.000249 Google Scholar
45. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics, Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285 Google Scholar
46. Wiederhecher, G. S., C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, "Field enhancement within an optical fibre with a subwavelength air core," Nature Photonics, Vol. 1, 115-118, 2007.
doi:10.1038/nphoton.2006.81 Google Scholar
47. Klocek, P., Handbook of Infrared Optical Materials, Marcel Dekker, New York, NY, 1991.
48. Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap matetrials," Phys. Rev. B, Vol. 48, 8434-8437, 1993.
doi:10.1103/PhysRevB.48.8434 Google Scholar
49. Chen, D., M.-L. Vincent Tse, and H. Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010.
doi:10.2528/PIERM09120701 Google Scholar