Vol. 105
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-16
Investigation of Classifiers for Early-Stage Breast Cancer Based on Radar Target Signatures
By
Progress In Electromagnetics Research, Vol. 105, 295-311, 2010
Abstract
Ultra Wideband (UWB) radar has been extensively investigated as a means of detecting early-stage breast cancer. The basis for this imaging modality is the dielectric contrast between normal and cancerous breast tissue at microwave frequencies. However, based on the dielectric similarities between a malignant and a benign tumour within the breast, differentiating between these types of tissues in microwave images may be problematic. Therefore, it is important to investigate alternative methods to analyse and classify dielectric scatterers within the breast, taking into account other tumour characteristics such as shape and surface texture of tumours. Benign tumours tend to have smooth surfaces and oval shapes whereas malignant tumours tend to have rough and complex surfaces with spicules or microlobules. Consequently, one classification approach is to classify scatterers based on their Radar Target Signature (RTS), which carries important information about scatterer size and shape. In this paper, Gaussian Random Spheres (GRS) are used to model the shape and size of benign and malignant tumours. Principal Components Analysis (PCA) is used to extract information from the RTS of the tumours, while eight different combinations of tumour classifiers are analysed in terms of performance and are compared in terms of two possible approaches: Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).
Citation
Raquel Cruz Conceicao, Martin O'Halloran, Edward Jones, and Martin Glavin, "Investigation of Classifiers for Early-Stage Breast Cancer Based on Radar Target Signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904
References

1. Meaney, P. M., et al. "Nonactive antenna compensation for fixed-array microwave imaging: Part II --- Imaging results," IEEE Transactions on Medical Imaging, Vol. 18, No. 6, 508-518, 1999.
doi:10.1109/42.781016        Google Scholar

2. Meaney, P. M., et al. "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861        Google Scholar

3. Meaney, P. M., et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016        Google Scholar

4. Bulyshev, A. E., et al. "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 48, No. 9, 1053-1056, 2001.
doi:10.1109/10.942596        Google Scholar

5. Souvorov, A. E., et al. "Two-dimensional computer analysis of a microwave flat antenna array for breast cancer tomography," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 8, 1413-1415, 2000.
doi:10.1109/22.859490        Google Scholar

6. Liu, Q. H., et al. "Active microwave imaging I --- 2-D forward and inverse scattering methods," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 1, 123-133, 2002.
doi:10.1109/22.981256        Google Scholar

7. Kosmas, P. and C. M. Rappaport, "Time reversal with the FDTD method for microwave breast cancer detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 7, 2317-2323, 2005.
doi:10.1109/TMTT.2005.850444        Google Scholar

8. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal for microwave breast cancer detection --- Localization in three dimensions," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1921-1927, 2006.
doi:10.1109/TMTT.2006.871994        Google Scholar

9. Kosmas, P. and C. M. Rappaport, "A matched-filter FDTD-based time reversal approach for microwave breast cancer detection," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1257-1264, 2006.
doi:10.1109/TAP.2006.872670        Google Scholar

10. Joines, W. T., et al. "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, No. 4, 1994.        Google Scholar

11. Surowiec, A. J., et al. "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988.
doi:10.1109/10.1374        Google Scholar

12. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440        Google Scholar

13. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902        Google Scholar

14. O'Halloran, M., R. C. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagnetics Research B, Vol. 18, 1-24, 2009.
doi:10.2528/PIERB09080505        Google Scholar

15. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627        Google Scholar

16. Li, X., et al. "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217        Google Scholar

17. Bond, E. J., et al. "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propogation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446        Google Scholar

18. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 830-840, 2009.
doi:10.1109/TBME.2009.2016392        Google Scholar

19. Lim, H. B., et al. "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716        Google Scholar

20. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglan-dular tissue distribution on data-independent beamforming algo-rithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701        Google Scholar

21. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-19, 2009.
doi:10.2528/PIER09100204        Google Scholar

22. Fear, E. C., et al. "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759        Google Scholar

23. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Antenna configurations for Ultra Wide Band radar detection of breast cancer," Proceedings of the SPIE, Vol. 7169, San Jose California, 2009.        Google Scholar

24. Klemm, M., et al. "Breast cancer detection using symmetrical antenna array," Antennas and Propagation, 2007. EuCAP 2007 The Second European Conference, Edinburgh, UK, 2007.        Google Scholar

25. Craddock, I. J., et al. "Development and application of a UWB radar system for breast imaging," 2008 Loughborough Antennas & Propagation Conference, 2008.        Google Scholar

26. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001        Google Scholar

27. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002        Google Scholar

28. Chen, Y., et al. "Effect of lesion morphology on microwave signature in ultra-wideband breast imaging: A preliminary two-dimensional investigation," 2007 IEEE Antennas and Propagation Society International Symposium, 2007.        Google Scholar

29. Chen, Y., et al. "Effect of lesion morphology on microwave signa-ture in 2-D ultra-wideband breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 8, 2011-2021, 2008.
doi:10.1109/TBME.2008.921136        Google Scholar

30. Chen, Y., I. J. Craddock, and P. Kosmas, "Feasibility study of lesion classification via contrast-agent-aided UWB breast of lesion classification via contrast-agent-aided UWB breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 5, 1003-1007, 2010.
doi:10.1109/TBME.2009.2038788        Google Scholar

31. Davis, S. K., et al. "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564        Google Scholar

32. Muinonen, K., "Introducing the Gaussian shape hypothesis for Asteroids and Comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.        Google Scholar

33. Everitt, B. S. and G. Dunn, Applied Multivariate Data Analysis, 2nd edition, Arnold Publishers, 2001.

34. Seber, G. A. F., Multivariate Observations, John Wiley & Sons, 1984.

35. Krzanowski, W. J., Principles of Multivariate Analysis: A User's Perspective, Oxford University Press, 1988.

36. Raykov, T. and G. A. Marcoulides, "An introduction to applied multivariate analysis,", Routledge Taylor & Francis Group, New York, 2008.        Google Scholar

37. Conceicao, R. C., et al. "Classification of suspicious regions within ultrawideband radar images of the breast," 16th IET Irish Signals and Systems Conference, ISSC 2008, Instn. Engg. & Tech., Galway, Ireland, UK, 2008.        Google Scholar

38. Rangayyan, R. M., et al. "Measures of acutance and shape for classification of breast tumors," IEEE Transactions on Medical Imaging, Vol. 16, No. 6, 799-810, 1997.
doi:10.1109/42.650876        Google Scholar

39. Guliato, D., et al. "Polygonal modeling of contours of breast tumors with the preservation of spicules," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 14-20, 2008.
doi:10.1109/TBME.2007.899310        Google Scholar

40. Nguyen, T. M. and R. M. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," Engineering in Medicine and Biology 27th Annual Conference, IEEE, Shangai, China, 2005.        Google Scholar

41. Muinonen, K., "Chapter 11: Light scattering by stochastically shaped particles," Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Editors, Academic Press, 2000.        Google Scholar

42. Wold, H., "Estimation of principal components and related models by iterative least squares," Multivariate Analysis, K. R. Krishnaiah, Editor, 391-420, Academic Press, New York, 1996.        Google Scholar

43. Shlens, J., "A tutorial on principal component analysis,", Mar. 25, 2003. Available: http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition jp.pdf..        Google Scholar

44. Bartholomew, D. J., et al. "The analysis and interpretation of multivariate data for social scientists," Texts in Statistical Science, Chapman & Hall/CRC, USA, 2002.        Google Scholar

45. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification,", Apr. 3, 2010. Available: www.csie.ntu.edu.tw/»cjlin/papers/guide/guide.pdf..        Google Scholar

46. Sullivan, D. M., Electromagnetic Simulation Using the FDTD, 1st Edition, IEEE Press Series on RF and Microwave Technology, R. D. Pollard and R. Booton, Editors, Wiley-IEEE Press, 2000.

47. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd edition, Artech House, 2000.