1. Meaney, P. M., et al. "Nonactive antenna compensation for fixed-array microwave imaging: Part II --- Imaging results," IEEE Transactions on Medical Imaging, Vol. 18, No. 6, 508-518, 1999.
doi:10.1109/42.781016 Google Scholar
2. Meaney, P. M., et al. "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861 Google Scholar
3. Meaney, P. M., et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016 Google Scholar
4. Bulyshev, A. E., et al. "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 48, No. 9, 1053-1056, 2001.
doi:10.1109/10.942596 Google Scholar
5. Souvorov, A. E., et al. "Two-dimensional computer analysis of a microwave flat antenna array for breast cancer tomography," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 8, 1413-1415, 2000.
doi:10.1109/22.859490 Google Scholar
6. Liu, Q. H., et al. "Active microwave imaging I --- 2-D forward and inverse scattering methods," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 1, 123-133, 2002.
doi:10.1109/22.981256 Google Scholar
7. Kosmas, P. and C. M. Rappaport, "Time reversal with the FDTD method for microwave breast cancer detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 7, 2317-2323, 2005.
doi:10.1109/TMTT.2005.850444 Google Scholar
8. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal for microwave breast cancer detection --- Localization in three dimensions," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1921-1927, 2006.
doi:10.1109/TMTT.2006.871994 Google Scholar
9. Kosmas, P. and C. M. Rappaport, "A matched-filter FDTD-based time reversal approach for microwave breast cancer detection," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1257-1264, 2006.
doi:10.1109/TAP.2006.872670 Google Scholar
10. Joines, W. T., et al. "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, No. 4, 1994. Google Scholar
11. Surowiec, A. J., et al. "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988.
doi:10.1109/10.1374 Google Scholar
12. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440 Google Scholar
13. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902 Google Scholar
14. O'Halloran, M., R. C. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagnetics Research B, Vol. 18, 1-24, 2009.
doi:10.2528/PIERB09080505 Google Scholar
15. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627 Google Scholar
16. Li, X., et al. "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217 Google Scholar
17. Bond, E. J., et al. "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propogation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446 Google Scholar
18. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 830-840, 2009.
doi:10.1109/TBME.2009.2016392 Google Scholar
19. Lim, H. B., et al. "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716 Google Scholar
20. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglan-dular tissue distribution on data-independent beamforming algo-rithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701 Google Scholar
21. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-19, 2009.
doi:10.2528/PIER09100204 Google Scholar
22. Fear, E. C., et al. "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
23. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Antenna configurations for Ultra Wide Band radar detection of breast cancer," Proceedings of the SPIE, Vol. 7169, San Jose California, 2009. Google Scholar
24. Klemm, M., et al. "Breast cancer detection using symmetrical antenna array," Antennas and Propagation, 2007. EuCAP 2007 The Second European Conference, Edinburgh, UK, 2007. Google Scholar
25. Craddock, I. J., et al. "Development and application of a UWB radar system for breast imaging," 2008 Loughborough Antennas & Propagation Conference, 2008. Google Scholar
26. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
27. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
28. Chen, Y., et al. "Effect of lesion morphology on microwave signature in ultra-wideband breast imaging: A preliminary two-dimensional investigation," 2007 IEEE Antennas and Propagation Society International Symposium, 2007. Google Scholar
29. Chen, Y., et al. "Effect of lesion morphology on microwave signa-ture in 2-D ultra-wideband breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 8, 2011-2021, 2008.
doi:10.1109/TBME.2008.921136 Google Scholar
30. Chen, Y., I. J. Craddock, and P. Kosmas, "Feasibility study of lesion classification via contrast-agent-aided UWB breast of lesion classification via contrast-agent-aided UWB breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 5, 1003-1007, 2010.
doi:10.1109/TBME.2009.2038788 Google Scholar
31. Davis, S. K., et al. "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564 Google Scholar
32. Muinonen, K., "Introducing the Gaussian shape hypothesis for Asteroids and Comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998. Google Scholar
33. Everitt, B. S. and G. Dunn, Applied Multivariate Data Analysis, 2nd edition, Arnold Publishers, 2001.
34. Seber, G. A. F., Multivariate Observations, John Wiley & Sons, 1984.
35. Krzanowski, W. J., Principles of Multivariate Analysis: A User's Perspective, Oxford University Press, 1988.
36. Raykov, T. and G. A. Marcoulides, "An introduction to applied multivariate analysis,", Routledge Taylor & Francis Group, New York, 2008. Google Scholar
37. Conceicao, R. C., et al. "Classification of suspicious regions within ultrawideband radar images of the breast," 16th IET Irish Signals and Systems Conference, ISSC 2008, Instn. Engg. & Tech., Galway, Ireland, UK, 2008. Google Scholar
38. Rangayyan, R. M., et al. "Measures of acutance and shape for classification of breast tumors," IEEE Transactions on Medical Imaging, Vol. 16, No. 6, 799-810, 1997.
doi:10.1109/42.650876 Google Scholar
39. Guliato, D., et al. "Polygonal modeling of contours of breast tumors with the preservation of spicules," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 14-20, 2008.
doi:10.1109/TBME.2007.899310 Google Scholar
40. Nguyen, T. M. and R. M. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," Engineering in Medicine and Biology 27th Annual Conference, IEEE, Shangai, China, 2005. Google Scholar
41. Muinonen, K., "Chapter 11: Light scattering by stochastically shaped particles," Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Editors, Academic Press, 2000. Google Scholar
42. Wold, H., "Estimation of principal components and related models by iterative least squares," Multivariate Analysis, K. R. Krishnaiah, Editor, 391-420, Academic Press, New York, 1996. Google Scholar
43. Shlens, J., "A tutorial on principal component analysis,", Mar. 25, 2003. Available: http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition jp.pdf.. Google Scholar
44. Bartholomew, D. J., et al. "The analysis and interpretation of multivariate data for social scientists," Texts in Statistical Science, Chapman & Hall/CRC, USA, 2002. Google Scholar
45. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification,", Apr. 3, 2010. Available: www.csie.ntu.edu.tw/»cjlin/papers/guide/guide.pdf.. Google Scholar
46. Sullivan, D. M., Electromagnetic Simulation Using the FDTD, 1st Edition, IEEE Press Series on RF and Microwave Technology, R. D. Pollard and R. Booton, Editors, Wiley-IEEE Press, 2000.
47. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd edition, Artech House, 2000.