Vol. 107
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-28
Green's Tensors for the Diffusive Electric Field in a Vti Half-Space
By
Progress In Electromagnetics Research, Vol. 107, 1-20, 2010
Abstract
Explicit Green's tensors for the diffusive electric field in a configuration with two homogeneous half spaces are of interest for primary-secondary formulations of frequency domain and time domain modeling schemes. We derive the explicit expressions for the Green tensor of the electric field generated by an electric dipole in space frequency and space time. Both source and receiver can have arbitrary positions in the vertical transverse isotropic (VTI) half space below a non conductive half space. Apart from their use in modeling schemes, the expressions can be used to understand the effect of the interface between the VTI and the non conducting half space. We show that the TE-mode refracts against the interface, and its effect in the VTI half space decays exponentially as a function of depth and is inversely proportional to horizontal distance cubed for horizontal source receiver distances larger than three times the source depth. In exploration geophysics, this part of the field is known as the "airwave". The contribution from the "airwave" has a late time behavior that differs from the other contributions to the electric field. This makes time domain systems relevant for exploration geophysical applications.
Citation
Evert C. Slob Jurg. W. Hunziker Wim A. Mulder , "Green's Tensors for the Diffusive Electric Field in a Vti Half-Space," Progress In Electromagnetics Research, Vol. 107, 1-20, 2010.
doi:10.2528/PIER10052807
http://www.jpier.org/PIER/pier.php?paper=10052807
References

1. Ellinsgrub, S., T. Eidesmo, S. Johansen, M. C. Sinha, L. M. MacGregor, and S. Constable, "Remote sensing of hydrocarbon layers by sea bed logging (SBL): Results from a cruise offshore Angola," The Leading Edge, Vol. 21, 972-982, 2002.

2. Kong, F. N., H. Westerdahl, S. Ellingsrud, T. Eidesmo, and S. Johansen, "`Seabed logging': A possible direct hydrocarbon indicator for deepsea prospects using EM energy," Oil & Gas Journal, Vol. 100, No. 19, 30-35, 2002.

3. Orange, A., K. Key, and S. Constable, "The feasibility of reservoir monitoring using time-lapse marine CSEM," Geophysics, Vol. 74, No. 2, F21-F29, 2009.

4. Zhdanov, M. S., S. K. Lee, and K. Yoshioka, "Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity," Geophysics, Vol. 71, No. 6, G333-G345, 2006.

5. Van den Berg, P. M., A. Abubakar, and T. M. Habashy, "An efficient 3D integral equation method for computation of electromagnetic wavefields in a layered configuration containing inhomogeneous objects," PIERS Proceedings, 11-16, Cambridge, USA, July 2-6, 2008.

6. Fan, Z. H., R. S. Chen, H. Chen, and D. Z. Ding, "Weak form nonuniform fast Fourier transform method for solving volume integral equations ," Progress In Electromagnetics Research, Vol. 89, 275-289, 2009.

7. Sun, X. Y. and Z. P. Nie, "Vector finite element analysis of multicomponent induction response in anisotropic formations," Progress In Electromagnetics Research, Vol. 81, 21-39, 2008.

8. Tehrani, A. M. and E. Slob, "Fast and accurate threedimensional controlled source electromagnetic modelling," Geophysical Prospecting, in press, 2010, DOI: 10.1111/j.1365 2478.2010.00876.x.

9. Commer, M. and G. Newman, "A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources ," Geophysics, Vol. 69, No. 5, 1192-1202, 2004.

10. Commer, M. and G. A. Newman, "An accelerated time domain ¯nite di®erence simulation scheme for three-dimensional transient electromagnetic modeling using geometric multigrid concepts," Radio Science, Vol. 41, No. 3, RS3007, 2006.

11. Mulder, W. A., "A multigrid solver for 3D electromagnetic diffusion," Geophysical Prospecting, Vol. 54, No. 5, 633-649, 2006.

12. Mulder, W. A., M. Wirianto, and E. C. Slob, "Time-domain modeling of electromagnetic diffusion with a frequency-domain code," Geophysics, Vol. 73, No. 1, F1-F8, 2008.

13. Commer, M. and G. A. Newman, "New advances in three-dimensional controlled-source electromagnetic inversion," Geophysical Journal International, Vol. 172, No. 2, 513-535, 2008.

14. Plessix, R.-E. and W. A. Mulder, "Resistivity imaging with controlled-source electromagnetic data: Depth and data weighting," Inverse Problems, Vol. 24, No. 3, 034012, 2008.

15. Abubakar, A., T. M. Habashy, M. Li, and J. Liu, "Inversion algorithms for large-scale geophysical electromagnetic measurements," Inverse Problems, Vol. 25, No. 12, 123012, 2009.

16. Newman, G. A., M. Commer, and J. J. Carazzone, "Imaging CSEM data in the presence of electrical anisotropy," Geophysics, Vol. 75, No. 2, F51-F61, 2010.

17. Raiche, A. P. and J. H. Coggon, "Analytic Greens tensors for integral-equation modeling," Geophysical Journal of the Royal Astronomical Society, Vol. 42, No. 3, 1035-1038, 1975.

18. Kong, J. A., "Electromagnetic fields due to dipole antennas over stratified anisotropic media," Geophysics, Vol. 37, No. 6, 985-996, 1972.

19. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series, nd Products, 5th Ed., Academic Press, New York, 1996.

20. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, 10th Ed., Applied Mathematics Series 55, National Bureau of Standards, Washington, USA, 1972.

21. Oberhettinger, F. and L. Badii, "Tables of Laplace Transforms," Springer-Verlag, Berlin, 1973.

22. Gaver, D. P., "Observing stochastic processes and approximate transform inversion," Operations Research, Vol. 14, No. 3, 444-459, 1966.

23. Stehfest, H., "Numerical inversion of Laplace transforms," Communications of the ACM, Vol. 13, No. 1, 47-49, 1970.

24. Plessix, R.-E., M. Darnet, and W. A. Mulder, "An approach for 3D multisource, multifrequency CSEM modeling," Geophysics, Vol. 72, No. 5, SM177-SM184, 2007.

25. Wirianto, M., W. A. Mulder, and E. C. Slob, "A feasibility study of land CSEM reservoir monitoring in a complex 3-D model," Geophysical Journal International, Vol. 181, No. 2, 741-755, 2010.

26. Talman, J. D., "Numerical Fourier and Bessel transforms in logarithmic variables," Journal of Computational Physics, Vol. 29, No. 1, 35-48, 1978.

27. Haines, G. V. and A. G. Jones, "Logarithmic Fourier transformation," Geophysical Journal of the Royal Astronomical Society, Vol. 92, 171-178, 1988.