Vol. 107
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-10
Multilevel Green's Function Interpolation Method Solution of Volume/Surface Integral Equation for Mixed Conducting/BI-Isotropic Objects
By
Progress In Electromagnetics Research, Vol. 107, 239-252, 2010
Abstract
This paper proposes a multilevel Green's function interpolation method (MLGFIM) to solve electromagnetic scattering from objects comprising both conductor and bi-isotropic objects using volume/surface integral equation (VSIE). Based on equivalence principle, the volume integral equation (VIE) in terms of volume electric and magnetic flux densities and surface integral equation (SIE) in terms of surface electric current density are first formulated for inhomogeneous bi-isotropic and conducting objects, respectively, and then are discretized using the method of moments (MoM). The MLGFIM is adopted to speed up the iterative solution of the resultant equation and reduces the memory requirement. Numerical examples are presented to show good accuracy and versatility of the proposed algorithm in dealing with a wide array of scattering problems.
Citation
Yan Shi Xiao Luan Jun Qin Chaojie Lv Chang-Hong Liang , "Multilevel Green's Function Interpolation Method Solution of Volume/Surface Integral Equation for Mixed Conducting/BI-Isotropic Objects," Progress In Electromagnetics Research, Vol. 107, 239-252, 2010.
doi:10.2528/PIER10060209
http://www.jpier.org/PIER/pier.php?paper=10060209
References

1. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Norwood, MA, 1994.

2. Serdyukov, A., I. Semchenko, S. Treyakov, and A. Sihvola, "Electromagnetics of Bi-anisotropic Materials Theory and Applications," Gordon and Breach Science Publishers, Amsterdam, 2001.

3. Bohren, C. F., "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, 458-462, 1974.

4. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface Sci., Vol. 66, 105-109, 1978.

5. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propagat., Vol. 51, 1077-1084, 2003.

6. Wang, D. X., E. K. N. Yung, R. S. Chen, and P. Y. Lau, "An efficient volume integral equation solution to EM scattering by complex bodies with inhomogeneous bi-isotropy," IEEE Trans. Antennas Propagat., Vol. 55, 1970-1980, 2007.

7. Semichaevsky, A., A. Akyurtlu, D. Kem, D. H. Werner, and M. G. Bray, "Novel BI-FDTD approach for the analysis of chiral cylinders and spheres," IEEE Trans. Antennas Propagat., Vol. 54, 925-932, 2006.

8. Akyurtlu, A. and D. H. Werner, "A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Trans. Antennas Propagat., Vol. 52, 2267-2276, 2004.

9. Sharma, R. and N. Balakrishnan, "Scattering of electromagnetic waves from arbitrary shaped bodies coated with a chiral material," Smart Mater. Struct., Vol. 7, 851-866, 1998.

10. Ghaffar, A. and Q. A. Naqvi, "Study of focusing of field refracted by a cylindrical plano-convex lens into a uniaxial crystal using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 665-679, 2008.

11. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving a boundary integral equation of wave scattering," Microw. Opt. Tech. Lett., Vol. 7, 456-461, 1994.

12. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast ltipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, 1488-1493, 1997.

13. Yang, M. L. and X. Q. Sheng, "Parallel high-order FE-BI-MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.

14. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and E±cient Algorithms in Computational Electromagnetics, Artech House, Norwood, MA, 2001.

15. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, 1225-1251, 1996.

16. Ling, F., C. F. Wang, and J. M. Jin, "An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex image method," IEEE Trans. Microw. Theory Tech., Vol. 48, 832-837, 2000.

17. Hu, L., L. W. Li, and T.-S. Yeo, "Analysis of scattering by large inhomogeneous bi-anisotropic objects using AIM," Progress In Electromagnetics Research, Vol. 99, 21-36, 2009.

18. Chan, C. H., C. M. Lin, L. Tsang, and Y. F. Leung, "A sparse-matrix/canonical grid method for analyzing microstrip structures," IEICE Trans. Electron, E80-C, 1354{1359, 1997.

19. Li, S. Q., Y. X. Yu, C. H. Chan, K. F. Chan, and L. Tsang, "A sparse-matrix/canonical grid method for analyzing densely packed interconnects," IEEE Trans. Microw. Theory Tech., Vol. 49, 1221-1228, 2001.

20. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 16, 1059-1072, 1997.

21. Nie, X. C., N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, "A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects," IEEE Trans. Antennas Propagat., Vol. 52, 818-824, 2005.

22. Wang, H. G., C. H. Chan, and L. Tsang, "A new multilevel Green's function interpolation method for large-scale low-frequency EM simulations," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 24, 1427-1443, 2005.

23. Wang, H. G. and C. H. Chan, "The implementation of multilevel Green's function interpolation method for full-wave electromagnetic problems ," IEEE Trans. Antennas Propagat., Vol. 55, 1348-1358, 2007.

24. Li, L., H. G. Wang, and C. H. Chan, "An improved multilevel Green's function interpolation method with adaptive phase compensation for large-scale full-wave EM simulation," IEEE Trans. Antennas Propagat., Vol. 56, 1381-1393, 2008.

25. Shi, Y., H. G. Wang, L. Li, and C. H. Chan, "Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects," J. Opt. Soc. Am. A, Vol. 25, 2535-2548, 2008.

26. Shi, Y. and C. H. Chan, "Multilevel Green's function interpolation method for analysis of 3-D frequency selective structures using volume/surface integral equation," J. Opt. Soc. Am. A, Vol. 27, 308-318, 2010.

27. Shi, Y. and C. H. Chan, "Solution to electromagnetic scattering by Bi-isotropic media using multilevel Green's function interpolation method," Progress In Electromagnetics Research, Vol. 97, 259-274, 2009.

28. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, 329-342, 1997.

29. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residual algorithm for solving non symmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, 856-869, 1986.

30. Horn, R. A. and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.

31. Xie, Y., J. He, A. Sullivan, and L. Carin, "A simple preconditioner for electric-field integral equations," Microw. Opt. Technol. Lett., Vol. 30, 51-54.