1. Society, A. C., Cancer facts and figures 2009, Tech. Rep., American Cancer Society, Atlanta, 2009.
2. Ferlay, J., P. Autier, M. Boniol, M. Heanue, M. Colombet, and P. Boyle, "Estimates of the cancer incidence and mortality in europe in 2006," Annals of Oncology, Vol. 18, 581-592, 2007. Google Scholar
3. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer , National Academy Press, 2001.
4. Huynh, P. H., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," RadioGraphics, Vol. 18, 1137-1154, 1998. Google Scholar
5. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional fdtd analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998. Google Scholar
6. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Communications Letters, Vol. 11, 130-132, 2001. Google Scholar
7. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 47, 812-812, 2002. Google Scholar
8. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, 1690-1705, 2003. Google Scholar
9. Kosmas, P. and C. M. Rappaport, "Time reversal with the fdtd method for microwave breast cancer detection,", Vol. 53, No. 7, 2317-2323, 2005. Google Scholar
10. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multi-static adaptive microwave imaging for early breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 53, 1647-1657, 2006. Google Scholar
11. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast ," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000. Google Scholar
12. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000. Google Scholar
13. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic ct at 434MHz --- Feasibility study ," Radiology, Vol. 216, No. 1, 279-283, 2000. Google Scholar
14. Zhao, M., J. D. Shea, S. C. Hagness, D. W. van der Weide, B. D. V. Veen, and T. Varghese, "Numerical study of microwave scattering in breast tissue via coupled dielectric and elastic contrasts," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 247-250, 2008. Google Scholar
15. O'Halloran, M., E. Jones, and M. Glavin, "Quasi-multistatic mist beamforming for the early detection of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 830-840, Apr. 2010. Google Scholar
16. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglandular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009. Google Scholar
17. Jossinet, J., "The impedivity of freshly excised human breast tissue," Physiol. Meas., Vol. 19, 61-75, 1998. Google Scholar
18. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues ," Physics in Medicine and Biology, Vol. 41, 2271-2293, 1996. Google Scholar
19. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, 2007. Google Scholar
20. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007. Google Scholar
21. Conceicao, R., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-19, 2009. Google Scholar
22. Nilavalan, R., S. C. Hagness, and B. D. V. Veen, "Numerical investigation of breast tumour detection using multi-static radar," IEE Electronic Letters, Vol. 39, No. 25, 1787-1789. Google Scholar
23. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection ," International Journal of Antennas and Propogation, Vol. 2008, 9, 2008. Google Scholar
24. Lim, H. B., N. T. T. Nhung, E.-P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiplyand sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, Jun. 2008. Google Scholar
25. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. V. Veen, and S. C. Hagness, Database of 3d grid-based numerical breast phantoms for use in computational electromagnetics simulations , Department of Electrical and Computer Engineering University of Wisconsin-Madison, [Online], 2008, Available: http://uwcem.ece..
26. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. V. Veen, and S. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, Dec. 2008. Google Scholar
27. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008. Google Scholar
28. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets ," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998. Google Scholar
29. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in fdtd," IEEE Microwave and Guided Wave Letters, Vol. 7, 121-123, 1997. Google Scholar
30. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, Nov. 1996. Google Scholar
31. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994. Google Scholar