1. Raisanen, A. V., "Challenges of Terahertz," The Second European Conference on Antennas and Propagation, 1-4, Nov. 2007. Google Scholar
2. Lin, X. Q., T. J. Cui, Y. Fan, and X. Liu, "Frequency selective surface designed using electric resonant structures in Terahertz frequency bands," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 21-99, 2009.
doi:10.1163/156939309787604724 Google Scholar
3. Javan Maleki, A. R. and N. Granpayeh, "Fast Terahertz wave switch/modulator based on photonic crystal structures," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 203-212, 2009.
doi:10.1163/156939309787604571 Google Scholar
4. Cai, M. and E. P. Li, "A novel Terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
doi:10.2528/PIER09090902 Google Scholar
5. Chen, D. and H. Chen, "Highly birefringent low-loss Terahertz waveguide: Elliptical polymer tube," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1553-1562, 2010.
doi:10.1163/156939310792149623 Google Scholar
6. Zhong, X. J., T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, "Terahertz-wave scattering by perfectly electrical conducting objects," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2331-2340, 2007.
doi:10.1163/156939307783134443 Google Scholar
7. Kong, F., K. Li, H. Huang, B. I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at Terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224 Google Scholar
8. Zhang, X. F., L. F. Shen, J. J. Wu, and T. J. Yang, "Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2451-2460, 2009. Google Scholar
9. Ghattan, Z., S. A. Izadi, and M. Shahabadi, "Analysis of Terahertz-induced optical phase modulation in nonlinear dielectric slab," Progress In Electromagnetics Research M, Vol. 13, 41-51, 2010. Google Scholar
10. Zocchi, F., E. Buratti, et al. "Reconformable reflector for millimetre and submillimeter-wave reflector antennas," IEEE, 576-579, 2002. Google Scholar
11. Neilson, J. M., "An improved muitimode horn for gaussian mode generation at milimeter and sub millimeter wavelengths," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 8, 1077-1081, 2002.
doi:10.1109/TAP.2002.801282 Google Scholar
12. Rebeiz, G. M., "Current status of integrated submillimeter-wave antennas," IEEE MTT-S Digest, BB3, 1145-1148, 1992. Google Scholar
13. Hesler, J. L., K. Hui, et al. "Analysis of an octagonal micromachined horn antenna for submillimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 6, 997-1001, 2001.
doi:10.1109/8.931159 Google Scholar
14. Zhang, Z. C. and W. B. Dou, "A compact THz scanning imaging system based on improved reverse-microscope system," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1045-1057, 2010.
doi:10.1163/156939310791585954 Google Scholar
15. Howard, D. D. and D. C. Cross, "Mirror antenna dual-band lightweight mirror design," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 3, 286-294, 1985.
doi:10.1109/TAP.1985.1143571 Google Scholar
16. Brooker, G. M., "Conical-scan antennas for W-band radar systems," Proceedings of the International Radar Conference, 406-411, 2003. Google Scholar
17. Besso, P., M. Bozzi, M. Formaggi, and L. Perregrini, "A novel technique for beam-aberration correction and fast conical scan in deep-space antennas," International Symposium on Signals, Systems, and Electronics, 451-454, 2007.
doi:10.1109/ISSSE.2007.4294510 Google Scholar
18. An, G. and W. B. Dou, "Analysis of sphere lens quasi-optical monopulse-antenna/feed structure," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 1, 83-93, 2005.
doi:10.1163/1569393052955044 Google Scholar
19. Goyette, T. M., J. C. Dickinson, K. J. Linden, et al. "1.56 Terahertz 2-frames per second standoff imaging," Proc. of SPIE, Terahertz Technology and Applications, Vol. 6893, Jan. 2008. Google Scholar
20. Grossman, E. N., C. R. Dietlein, M. Leivo, et al. "A passive, real-time, Terahertz camera for security screening, using superconducting microbolometers," IEEE MTT-S International Microwave Symposium Digest, 1453-1456, 2009. Google Scholar
21. Xu, J. and G. C. Cho, "A real-time terahertz wave imager,", OSA/CLEO/QELS, 2008. Google Scholar
22. Lettington, A. H., D. Dunn, N. E. Alexander, et al. "Design and development of a high-performance passive millimeter imager for aeronautical applications," Optical Engineering, Vol. 44, No. 9, 093202, Sep. 2005.
doi:10.1117/1.2050447 Google Scholar
23. Song, Q., A. Redo-Sanchez, Y. Zhao, and C. Zhang, "High speed imaging with CW THz for security," Proc. of SPIE, Vol. 7160, 2008. Google Scholar
24. Lettington, A. H., D. Dunn, M. Attia, and I. M. Blankson, "Passive millimeter-wave imaging architectures," J. Opt. A: Pure Appl. Opt., Vol. 5, S103-S110, 2003.
doi:10.1088/1464-4258/5/4/363 Google Scholar
25. OuYang, J., "A novel radiation pattern and frequency reconfigurable microstrip antenna on a thin substrate for wide-band and wide-angle scanning application," Progress In Electromagnetics Research Letters, Vol. 4, 167-172, 2008.
doi:10.2528/PIERL08101201 Google Scholar
26. Yuan, H. W., S. X. Gong, P. F. Zhang, and X. Wang, "Wide scanning phased array antenna using printed dipole antennas with parasitic element," Progress In Electromagnetics Research Letters, Vol. 2, 187-193, 2008.
doi:10.2528/PIERL08011602 Google Scholar