1. Ballentine, L. E., Quantum Mechanics: A Modern Development, 672, World Scientific Publishing Company, 1998.
2. Van Deb Berg, P. M., "Iterative computational techniques in scattering based upon the integrated square error criterion," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 10, 1063-1071, 1984. Google Scholar
3. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1983.
4. Born, M. and E. Wolf, Principles of Optics, 7 Ed., Cambridge University Press, 1999.
5. Bucci, O. M., N. Cardace, L. Crocco, and T. Isernia, "Degree of nonlinearity and a new solution procedure in scalar two-dimensional inverse scattering problems," J. Opt. Soc. Am. A, Vol. 18, No. 8, 1832-1843, 2001. Google Scholar
6. Chen, B. and J. J. Stamnes, "Validity of diffraction tomography based on the first Born and the first Rytov approximations," Appl. Opt., Vol. 37, No. 14, 2996-3006, 1998. Google Scholar
7. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.
8. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 356, Springer, 1998.
9. Crocco, L. and M. D'Urso, "The contrast source-extended Born model for 2D subsurface scattering problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009. Google Scholar
10. Cui, T. J., W. C. Chew, A. A. Aydiner, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 2, 339-345, 2001. Google Scholar
11. Durgun, A. C. and M. Kuzuoglu, "Computation of physical optics integral by Levin's integration algorithm," Progress In Electromagnetics Research M, Vol. 6, 59-74, 2009. Google Scholar
12. Fan, Z., R.-S. Chen, H. Chen, and D.-Z. Ding, "Weak form nonuniform fast fourier transform method for solving volume integral equations," Progress In Electromagnetics Research, Vol. 89, 275-289, 2009. Google Scholar
13. Harrington, R. F., Time-harmonic Electromagnetic Fields, IEEE Press, 2001.
14. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008. Google Scholar
15. Isernia, T., L. Crocco, and M. D'Urso, "New tools and series for forward and inverse scattering problems in lossy media," IEEE Geoscience and Remote Sensing Letters, Vol. 1, No. 4, 327-331, 2004. Google Scholar
16. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, 1978.
17. Kak, A. C. and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1988.
18. Karris, S. T., Signals and Systems with MATLAB Computing and Simulink Modeling, 3 Ed., Orchard Publications, 2006.
19. Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley & Sons Inc, 1978.
20. Li, J., X. Wang, and T. Wang, "A universal solution to one-dimensional highly oscillatory integrals," Science in China, Vol. 51, No. 10, 1614-1622, 2008. Google Scholar
21. Li, J., X.Wang, T.Wang, and C. Shen, "Delaminating quadrature method for multi-dimensional highly oscillatory integrals," Appl. Math. Comput., Vol. 209, No. 2, 327-338, 2009. Google Scholar
22. Li, J., X. Wang, T. Wang, and S. Xiao, "An improved levin quadrature method for highly oscillatory integrals," Appl. Num. Math., Vol. 60, 833-842, 2010. Google Scholar
23. Matzler, C., "Matlab functions for mie scattering and absorption,", Technical report, Institute of Applied Physics, University of Bern, 2001. Google Scholar
24. Carruth McGehee, O., An Introduction to Complex Analysis, John Wiley & Sons Inc, 2000.
25. Mojabi, P. and J. LoVetri, "Adapting the normalized cumulative periodogram parameter-choice method to the tikhonov regularization of 2-D/TM electromagnetic inverse scattering using Born iterative method," Progress In Electromagnetics Research M, Vol. 1, 111-138, 2008. Google Scholar
26. Nordebo, S. and M. Gustafsson, "A priori modeling for gradient based inverse scattering algorithms," Progress In Electromagnetics Research B, Vol. 16, 407-432, 2009. Google Scholar
27. Leonard, L. S., Quantum Mechanics, McGraw-Hill, 1968.
28. Shariff, K. and A. Wray, "Analysis of the radar reflectivity of aircraft vortex wakes," J. Fluid Mech., Vol. 463, 121-161, 2002. Google Scholar
29. Su, D. Y., D. M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAS," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008. Google Scholar
30. Trattner, S., M. Feigin, H. Greenspan, and N. Sochen, "Validity criterion for the Born approximation convergence in microscopy imaging," J. Opt. Soc. Am. A, Vol. 26, No. 5, 1147-1156, 2009. Google Scholar
31. Trattner, S., M. Feigin, H. Greenspan, and N. Sochen, "Can Born approximate the unborn? A new validity criterion for the Born approximation in microscopic imaging," IEEE 11th International Conference on Computer Vision, Vol. 14, No. 21, 1-8, 2007. Google Scholar
32. Trattner, S., M. Feigin, H. Greenspan, and N. Sochen, "The Born approximation for round and cubical objects in dic microscopy imaging," Proceeding of the Microscopic Image Analysis with Applications in Biology (MIAAB) Workshop, Piscataway, 2007. Google Scholar
33. Wen, Y., "Improved recursive algorithm for light scattering by multilayered sphere," Appl. Opt., Vol. 42, No. 9, 1710-1720, 2003. Google Scholar
34. Wu, Z., L. Guo, K. Ren, G. Gouesbet, and G. Grehan, "Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres," Appl. Opt., Vol. 36, No. 21, 5188-5198, 1997. Google Scholar
35. Liu, Z. H., E. K. Chua, and K. Y. See, "Accurate and efficient evaluation of method of moments matrix based on a generalized analytical approach," Progress In Electromagnetics Research, Vol. 94, 367-382, 2009. Google Scholar