1. Okamoto, K., I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater., Vol. 3, No. 9, 601-605, 2004.
doi:10.1038/nmat1198 Google Scholar
2. Chu, W.-H., Y.-J. Chuang, C.-P. Liu, P.-I. Lee, and S. L.-C. Hsu, "Enhanced spontaneous light emission by multiple surface plasmon coupling," Opt. Express, Vol. 18, No. 9, 9677-9683, 2010.
doi:10.1364/OE.18.009677 Google Scholar
3. Song, J. H., T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, "Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons," Nano. Lett., Vol. 5, No. 8, 5, 2005.
doi:10.1021/nl050813r Google Scholar
4. Neogi, A., C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Physical Review B, Vol. 66, No. 15, 153305, 2002.
doi:10.1103/PhysRevB.66.153305 Google Scholar
5. Gontijo, I., M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Physical Review B, Vol. 60, No. 16, 11564, 1999.
doi:10.1103/PhysRevB.60.11564 Google Scholar
6. Hecker, N. E., R. A. Hopfel, and N. Sawaki, "Enhanced light emission from a single quantum well located near a metal coated surface," Physica E: Low-dimensional Systems and Nanostructures, Vol. 2, No. 1-4, 98-101, 1998.
doi:10.1016/S1386-9477(98)00022-8 Google Scholar
7. Chang, C. Y. and Y. R.Wu, "Study of light emission enhancement in nanostructured InGaN/GaN quantum wells," IEEE Journal of Quantum Electronics, Vol. 46, No. 6, 884-889, 2010.
doi:10.1109/JQE.2010.2040515 Google Scholar
8. Chen, H. S., D. M. Yeh, C. F. Lu, C. F. Huang, W. Y. Shiao, J. J. Huang, C. C. Yang, I. S. Liu, and W. F. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photonics Technology Letters, Vol. 18, No. 13, 1430-1432, 2006.
doi:10.1109/LPT.2006.877551 Google Scholar
9. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Physical Review, Vol. 69, 681, 1946. Google Scholar
10. Goy, P., J. M. Raimond, M. Gross, and S. Haroche, "Observation of cavity-enhanced single-atom spontaneous emission," Physical Review Letters, Vol. 50, No. 24, 1903-1906, 1983.
doi:10.1103/PhysRevLett.50.1903 Google Scholar
11. Blanco, L. A. and F. J. García de Abajo, "Spontaneous light emission in complex nanostructures," Physical Review B, Vol. 69, No. 20, 205414, 2004.
doi:10.1103/PhysRevB.69.205414 Google Scholar
12. Ryu, H. Y. and J. I. Shim, "Structural parameter dependence of light extraction efficiency in photonic crystal InGaN vertical light-emitting diode structures," IEEE Journal of Quantum Electronics, Vol. 46, No. 5, 714-720, 2010.
doi:10.1109/JQE.2009.2035933 Google Scholar
13. Long, D. H., I. K. Hwang, and S. W. Ryu, "Design optimization of photonic crystal structure for improved light extraction of GaN LED," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 4, 1257-1263, 2009.
doi:10.1109/JSTQE.2009.2014471 Google Scholar
14. Chen, J.-Y., J.-Y. Yeh, L.-W. Chen, Y.-G. Li, and C.-C. Wang, "Design and modeling for enhancement of light extraction in light-emitting diodes with archimedean lattice photonic crystals," Progress In Electromagnetics Research B, Vol. 11, 265-279, 2009.
doi:10.2528/PIERB08112704 Google Scholar
15. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. S. Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003. Google Scholar
16. Lee, C. T., L. Z. Yu, and H. Y. Liu, "Optical performance improvement mechanism of multimode-emitted white resonant cavity organic light-emitting diodes," IEEE Photonics Technology Letters, Vol. 22, No. 5, 272-274, 2010.
doi:10.1109/LPT.2010.2050473 Google Scholar
17. Klimov, V. V., "Spontaneous emission of an excited atom placed near a "left-handed" sphere," Optics Communications, Vol. 211, No. 1-6, 183-196, 2002.
doi:10.1016/S0030-4018(02)01802-3 Google Scholar
18. Eschner, J., C. Raab, F. Schmidt-Kaler, and R. Blatt, "Light interference from single atoms and their mirror images," Nature, Vol. 413, No. 6855, 495-498, 2001.
doi:10.1038/35097017 Google Scholar
19. Trieu, S., X. M. Jin, B. Zhang, T. Dai, K. Bao, X. N. Kang, and G. Y. Zhang, "Light extraction improvement of GaN-based light-emitting diodes using patterned undoped GaN bottom reflection gratings," Proceedings of the SPIE, Vol. 7216, 72162Q-72162Q-8, 2009.
doi:10.1117/12.805480 Google Scholar
20. Buss, I. J., G. R. Nash, J. G. Rarity, and M. J. Cryan, "Finite-difference time-domain modeling of periodic and disordered surface gratings in AlInSb light emitting diodes with metallic back-reflectors," IEEE Journal of Lightwave Technology, No. 8, 1190-1200, 2010.
doi:10.1109/JLT.2010.2040803 Google Scholar
21. Hecker, N. E., R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, "Surface plasmon-enhanced photoluminescence from a single quantum well," Applied Physics Letters, Vol. 75, No. 11, 1577-1579, 1999.
doi:10.1063/1.124759 Google Scholar
22. Gianordoli, S., R. Hainberger, A. Kock, N. Finger, E. Gornik, C. Hanke, and L. Korte, "Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes," Applied Physics Letters, Vol. 77, No. 15, 2295-2297, 2000.
doi:10.1063/1.1317538 Google Scholar
23. Vuckovic, J., M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE Journal of Quantum Electronics, Vol. 36, No. 10, 1131-1144, 2000.
doi:10.1109/3.880653 Google Scholar
24. Kong, F., K. Li, B. I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203 Google Scholar
25. Kong, F., K. Li, H. Huang, B. I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224 Google Scholar
26. Yoon, J., S. H. Song, and J. H. Kim, "Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: An upper limit," Opt. Express, Vol. 16, No. 2, 1269-1279, 2008.
doi:10.1364/OE.16.001269 Google Scholar
27. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.
doi:10.2528/PIER07030301 Google Scholar
28. Sambles, J. R., G. W. Bradbery, and F. Yang, "Optical excitation of surface plasmons: An introduction," Contemporary Physics, Vol. 32, No. 3, 173-18, 1991.
doi:10.1080/00107519108211048 Google Scholar
29. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, Vol. 408, No. 3-4, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001 Google Scholar
30. Entezar, R. S., A. Namdar, H. Rahimi, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 171-182, 2009.
doi:10.1163/156939309787604427 Google Scholar
31. García-Vidal, F. J. and J. B. Pendry, "Collective theory for surface enhanced raman scattering," Physical Review Letters, Vol. 77, No. 6, 1163, 1996.
doi:10.1103/PhysRevLett.77.1163 Google Scholar
32. Chuang, W. H., J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter," Applied Physics Letters, Vol. 92, No. 13, 133115, 2008.
doi:10.1063/1.2906363 Google Scholar
33. Chuang, W. H., J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Transient behaviors of surface plasmon coupling with a light emitter," Applied Physics Letters, Vol. 93, No. 15, 153104, 2008.
doi:10.1063/1.2998617 Google Scholar
34. Wang, J. Y., Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Applied Physics Letters, Vol. 91, No. 23, 233104, 2007.
doi:10.1063/1.2821829 Google Scholar
35. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8/9, 1005-1014, 2010.
doi:10.1163/156939310791586098 Google Scholar
36. Zhang, X. F., L. F. Shen, J.-J. Wu, and T.-J. Yang, "Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2451-2460, 2009. Google Scholar
37. Suyama, T., Y. Okuno, and T. Matsuda, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.
doi:10.1163/156939309789566914 Google Scholar
38. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Purely quadratic dispersion of surface plasmon in Ag/Ni(111): The influence of electron confinement," Physica Status Solidi (RRL) --- Rapid Research Letters, Vol. 2, No. 2, 86-88, 2008.
doi:10.1002/pssr.200701307 Google Scholar
39. Politano, A., V. Formoso, E. Colavita, and G. Chiarello, "Probing collective electronic excitations in as-deposited and modified Ag thin films grown on Cu(111)," Physical Review B, Vol. 79, No. 4, 045426, 2009.
doi:10.1103/PhysRevB.79.045426 Google Scholar
40. Yu, Y., Y. Jiang, Z. Tang, Q. Guo, J. Jia, Q. Xue, K. Wu, and E. Wang, "Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films," Physical Review B, Vol. 72, No. 20, 205405, 2005.
doi:10.1103/PhysRevB.72.205405 Google Scholar
41. Politano, A., V. Formoso, and G. Chiarello, "Damping of the surface plasmon in clean and K-modified Ag thin films," Journal of Electron Spectroscopy and Related Phenomena, Vol. 173, No. 1, 12-17, 2009.
doi:10.1016/j.elspec.2009.03.003 Google Scholar
42. Kane, Y., "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
43. Chen, C. Y., Q. Wu, X. J. Bi, Y. M. Wu, and L. W. Li, "Characteristic analysis for FDTD based on frequency response," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 283-292, 2010.
doi:10.1163/156939310790735796 Google Scholar
44. Yang, H., "Exponential FDTD for plasma dispersive medium," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1165-1172, 2008.
doi:10.1163/156939308784158913 Google Scholar
45. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.
doi:10.1103/PhysRevB.6.4370 Google Scholar