1. Lencrerot, R., A. Litman, H. Tortel, and J.-M. Geffrin, "Imposing Zernike representation for two-dimensional targets imaging," Inverse Problems, Vol. 25, No. 3, 035012, 2009.
doi:10.1088/0266-5611/25/3/035012 Google Scholar
2. Litman, A., R. Lencrerot, and J.-M. Geffrin, "Combining spatial support information and shape-based method for tomographic imaging inside a microwave cylindrical scanner," Inverse Problems Sci. Eng., Vol. 18, No. 1, 19-34, 2010.
doi:10.1080/17415970903233580 Google Scholar
3. McGahan, R. and R. Kleinman, "Third annual special session on image reconstruction using real data," IEEE Antennas Propagat. Mag., Vol. 41, No. 1, 34-36, 1999.
doi:10.1109/MAP.1999.755022 Google Scholar
4. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental setup and measurement precision," Inverse Problems, Vol. 21, No. 6, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09 Google Scholar
5. Solimene, R., A. Brancaccio, J. Romano, and R. Pierri, "Localizing thin metallic cylinders by a 2.5D linear distributional approach: Experimental results," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2630-2637, 2008.
doi:10.1109/TAP.2008.927506 Google Scholar
6. Yu, C., M. Yuan, J. Stand, E. Bressiour, R. George, G. Ybarra, W. Joines, and Q. Liu, "Active microwave imaging II: 3D systeme prototype and image reconstruction from experimental data," IEEE Trans. Microwave Theory and Tech., Vol. 56, No. 4, 991-1000, 2008.
doi:10.1109/TMTT.2008.919661 Google Scholar
7. Duchêne, B., A. Joisel, and M. Lambert, "Nonlinear inversions of immersed objects from laboratory-controlled data," Inverse Problems, Vol. 20, No. 6, S81-S98, 2004.
doi:10.1088/0266-5611/20/6/S06 Google Scholar
8. Eyraud, C., J.-M. Geffrin, P. Lewyllie, A. Franchois, and A. Dubois, "Target localization and measured scattered field preprocessing using spectral bandwidth minimization for shallowly buried target problems," Microw. Opt. Tech. Lett., Vol. 52, No. 1, 147-151, 2010.
doi:10.1002/mop.24855 Google Scholar
9. Yu, C., M. Yuan, J. Stand, R. George, G. Ybarra, W. Joines, and Q. Liu, "Microwave imaging in a layered media: 3D image reconstruction from experimental data," IEEE Trans. Antennas Propagat., Vol. 58, No. 2, 440-448, 2010.
doi:10.1109/TAP.2009.2037770 Google Scholar
10. Broquetas, A., J. Romeu, J. Rius, A. Elias-Fuste, A. Cardama, and L. Jofre, "Cylindrical geometry: A further step in active microwave tomography," IEEE Trans. Microwave Theory and Tech., Vol. 39, No. 5, 836-844, 1991.
doi:10.1109/22.79111 Google Scholar
11. Meaney, P., M. Fanning, D. Li, S. Poplack, and K. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory and Tech., Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861 Google Scholar
12. Geffrin, J.-M., "Imagerie microonde: Etude d'un scanner a 434MHz pour applications biomedicales,", Ph.D. Thesis, University of Paris XI, Orsay, France, 1995. Google Scholar
13. Lencrerot, R., A. Litman, H. Tortel, and J.-M. Geffrin, "Measurement strategies for a confined microwave circular scanner," Inverse Problems Sci. Eng., Vol. 17, No. 6, 787-802, 2009.
doi:10.1080/17415970802577012 Google Scholar
14. Mojabi, P. and J. LoVetri, "Eigenfunction contrast source inversion for circular metallic enclosures," Inverse Problems, Vol. 26, No. 2, 025010, 2010.
doi:10.1088/0266-5611/26/2/025010 Google Scholar
15. Padhi, S., A. Fhager, M. Persson, and J. Howard, "Measured antenna response of a proposed microwave tomography system using an efficient 3-D FFT model," IEEE Antennas and Wireless Propag. Lett., Vol. 7, 689-692, 2008.
doi:10.1109/LAWP.2008.2009888 Google Scholar
16. Azaro, R., S. Caorsi, and M. Pastorino, "A 3-GHz microwave imaging system based on a modulated scattering technique and a modified Born approximation," Int. J. Imaging Systems Tech., Vol. 9, 395-403, 1998.
doi:10.1002/(SICI)1098-1098(1998)9:5<395::AID-IMA10>3.0.CO;2-U Google Scholar
17. Eyraud, C., J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, "Validation of a 3D bistatic microwave scattering measurement setup," Radio Sci., Vol. 43, No. 4, RS4018, 2008.
doi:10.1029/2008RS003836 Google Scholar
18. Geffrin, J.-M., C. Eyraud, A. Litman, and P. Sabouroux, "Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets," Radio Sci., Vol. 44, RS2007, 2009.
doi:10.1029/2008RS003837 Google Scholar
19. Geffrin, J.-M. and P. Sabouroux, "Continuing with the fresnel database: Experimental setup and improvements in 3D scattering measurements," Inverse Problems, Vol. 25, No. 2, 024001, 2009.
doi:10.1088/0266-5611/25/2/024001 Google Scholar
20. Kahny, D., K. Schmitt, and W. Wiesbeck, "Calibration of bistatic polarimetric radar systems," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 5, 847-852, 1992.
doi:10.1109/36.175318 Google Scholar
21. Whitt, M., F. Ulaby, P. Polatin, and V. Liepa, "A general polarimetric radar calibration technique," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 62-67, 1991.
doi:10.1109/8.64436 Google Scholar
22. Bradley, J., P. Collins, J. Fortuny-Guash, M. Hastriter, G. Nesti, A. Terzuoli, and K. Wilson, "An investigation of bistatic calibration techniques," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 10, 2185-2191, 2005.
doi:10.1109/TGRS.2005.855130 Google Scholar
23. Eyraud, C., J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, "Drift correction for scattering measurements," Appl. Phys. Lett., Vol. 89, No. 24, 244104, 2006.
doi:10.1063/1.2404978 Google Scholar
24. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Trans. Biomed. Eng., Vol. 57, 894-904, 2010.
doi:10.1109/TBME.2009.2036372 Google Scholar
25. Crocco, L. and A. Litman, "On embedded microwave imaging systems: Retrievable information and design guidelines," Inverse Problems, Vol. 25, No. 6, 065001, 2009.
doi:10.1088/0266-5611/25/6/065001 Google Scholar
26. Paulides, M., J. Bakker, N. Chavannes, and G. van Rhoon, "A patch antenna design for application in a phased-array head and neck hyperthermia applicator," IEEE Trans. Biomed. Eng., Vol. 54, No. 11, 2057-2063, 2007.
doi:10.1109/TBME.2007.895111 Google Scholar
27. Meaney, P., S. Pendergrass, M. Fanning, D. Li, and K. Paulsen, "Importance of using a reduced contrast coupling medium in 2D microwave breast imaging," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 333-355, 2003.
doi:10.1163/156939303322235851 Google Scholar
28. Franchois, A., "Contribution à la tomographie microonde: Algorithmes de reconstruction quantitative et vérifications experimentales,", Ph.D. Thesis, University of Paris XI, Orsay, France, 1993. Google Scholar
29. Franchois, A. and A. G. Tijhuis, "A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment," Radio Sci., Vol. 38, No. 2, 8011, 2003.
doi:10.1029/2001RS002590 Google Scholar
30. Van den Berg, P. M. and J. T. Fokkema, "Removal of undesired wavefields related to the casing of a microwave scanner," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 1, 187-192, 2003.
doi:10.1109/TMTT.2002.806900 Google Scholar
31. Lencrerot, R., "Outils de modélisation et d'imagerie pour un scanner micro-onde: Application au contrôle de la teneur en eau d'une colonne de sol,", Ph.D. Thesis, Univ. P. Cezanne, Marseille, France, 2008. Google Scholar
32. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurement strategies," Radio Sci., Vol. 32, No. 6, 2123-2138, 1997.
doi:10.1029/97RS01826 Google Scholar
33. Fang, Q., P. Meaney, S. Geimer, A. Streltsov, and K. Paulsen, "Microwave imaging reconstruction from 3D fields coupled to 2D parameter estimation," IEEE Trans. Medical Imaging, Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152 Google Scholar
34. Eyraud, C., A. Litman, A. Hérique, and W. Kofman, "Microwave imaging from experimental data within a Bayesian framework with realistic random noise," Inverse Problems, Vol. 25, No. 2, 024005, 2009.
doi:10.1088/0266-5611/25/2/024005 Google Scholar