1. Hirokawa, J. and M. Ando, "76 GHz post-wall waveguide-fed parallel plate slot arrays for car-radar applications," IEEE AP-S Int. Symp., Vol. 1, 98-101, 2000. Google Scholar
2. Kimura, Y., et al., "A low-cost and very compact wireless terminal integrated on the back of a waveguide planar array for 26 GHz band FWA systems," IEEE Trans. Antennas Propagat., Vol. 53, No. 8, 2456-2462, Aug. 2005.
doi:10.1109/TAP.2005.852320 Google Scholar
3. Yang, S., S. H. Suleiman, and A. E. Fathy, "Ku-band slot array antennas for low profile mobile DBS applications: Printed vs. machined," IEEE AP-S Int. Symp., 3137-3140, 2006. Google Scholar
4. Vincenti Gatti, R and R. Sorrentino, "A Ka-band active scanning array for mobile satellite terminals using slotted waveguide technology," 25th Antenna Workshop on Satellite Antenna Technology, Noordwijk, The Netherlands, Sep. 2002. Google Scholar
5. Nakano, H., et al., "Cost effective 60 GHz modules with a post-wall planar antenna for gigabit home-link system," Proc. 33rd European Microwave Conference, 891-894, 2003.
doi:10.1109/EUMA.2003.341105 Google Scholar
6. Hua, Y. and J.-Y. Li, "Analysis of longitudinal shunt waveguide slots using FEBI," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2041-2046, 2009.
doi:10.1163/156939309789932520 Google Scholar
7. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 2, 593-596, Feb. 2003.
doi:10.1109/TMTT.2002.807820 Google Scholar
8. Wang, R., L.-S. Wu, and X.-L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetic Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501 Google Scholar
9. Li, R., X. Tang, and F. Xiao, "A novel substrate integrated waveguide square cavity dual-mode filter," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2523-2529, 2009. Google Scholar
10. Lee, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB vivaldi antenna array using SIW technology," Progress In Electromagnetic Research, Vol. 90, 369-384, 2009. Google Scholar
11. Yan, L., W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microwave Wireless Comp. Letters, Vol. 14, No. 9, 446-448, Sep. 2004.
doi:10.1109/LMWC.2004.832081 Google Scholar
12. Cheng, S., H. Yousef, and H. Kratz, "79 GHz slot antennas based on substrate integrated waveguides (SIW) in a flexible printed circuit board," IEEE Trans. Antennas Propagat., Vol. 57, No. 1, 64-70, Jan. 2009.
doi:10.1109/TAP.2008.2009708 Google Scholar
13. Bakhtafrooz, A., A. Borji, D. Busuioc, and S. Safavi-Naeini, "Compact two-layer slot array antenna with SIW for 60 GHz wireless applications," IEEE AP-S Int. Symp., 1-4, Jun. 2009. Google Scholar
14. Elliott, R. S., "An improved design procedure for small arrays of shunt slots," IEEE Trans. Antennas Propagat., Vol. 31, No. 1, 48-53, Jan. 1983.
doi:10.1109/TAP.1983.1143002 Google Scholar
15. Elliott, R. S. and W. R. O'Loughlin, "The design of slot arrays including internal mutual coupling," IEEE Trans. Antennas Propagat., Vol. 34, No. 9, 1149-1154, Sep. 1986.
doi:10.1109/TAP.1986.1143947 Google Scholar
16. Elliot, R. S., "The design of waveguide-fed slot arrays," Antenna Handbook, Y. T. Lo and S. W. Lee (eds.), Chap. 12, Van Nostrand Reinhold, New York, 1993. Google Scholar
17. Stern, G. J. and R. S. Elliott, "Resonant length of longitudinal slots and validity of circuit representation: Theory and experiment," IEEE Trans. Antennas Propagat., Vol. 33, No. 11, 1264-1271, Nov. 1985.
doi:10.1109/TAP.1985.1143509 Google Scholar
18. Coetzee, J. C. and J. Joubert, "Analysis procedure for arrays of waveguide slot doublets based on the full T-netwrok equivalent circuit representaion of radiators," IEE Proc. Microw. Antennas Propag., Vol. 147, No. 3, 173-178, Jun. 2000.
doi:10.1049/ip-map:20000362 Google Scholar
19. Rengarajan, S. R., "Analysis of a center-inclined waveguide slot coupler," IEEE Trans. Microwave Theory Tech., Vol. 37, No. 5, 884-889, May 1989.
doi:10.1109/22.17455 Google Scholar
20. Rengarajan, S. R. and G. M. Shaw, "Accurate characterization of coupling junctions in waveguide-fed planar slot arrays," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2239-2248, Dec. 1994.
doi:10.1109/22.339748 Google Scholar
21. Rengarajan, S. R., "Higher order mode coupling effects in the feeding waveguide of a planar slot array," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 7, 1219-1223, Jul. 1991.
doi:10.1109/22.85390 Google Scholar
22. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, 66-72, Jan. 2005.
doi:10.1109/TMTT.2004.839303 Google Scholar
23. Yan, L., W. Hong, K. Wu, and T. J. Cui, "Investigations of the propagation characteristics of the substrate integrated waveguide based on the method of lines," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 152, No. 1, 35-42, Feb. 2005.
doi:10.1049/ip-map:20040726 Google Scholar
24. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave Wireless Comp. Letters, Vol. 11, No. 2, 68-70, Feb. 2001.
doi:10.1109/7260.914305 Google Scholar
25. Horn, A., "Dielectric constant and loss of selected grades of Rogers high frequency circuit substrates from 1-50 GHz,", Tech. Rep. 5788, Rogers Corp., Rogers, CT, Sep. 2003. Google Scholar