1. Jeong, Y. C. and B. G. Lee, "Characteristics of second-harmonic generation including third-order nonlinear interactions," IEEE Journal of Quantum Electronics, Vol. 37, 1292-1300, Oct. 2001.
doi:10.1109/3.952541 Google Scholar
2. Chi, J. W. D., L. Chao, and M. K. Rao, "Time-domain large-signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguides," IEEE Journal of Quantum Electronics, Vol. 37, 1329-1336, Oct. 2001.
doi:10.1109/3.952545 Google Scholar
3. Moten, K., C. H. Durney, and T. G. Stockham, "Electromagnetic pulsed-wave radiation in spherical-models of dispersive biological substances," Bioelectromagnetics, Vol. 12, 319-333, Apr. 1991.
doi:10.1002/bem.2250120602 Google Scholar
4. Dorn, O., H. Bertete-Aguirre, J. G. Berryman, and G. C. Papanicolaou, "A nonlinear inversion method for 3d electromagnetic imaging using adjoint fields," Inverse Problems, Vol. 15, 1523-1558, Dec. 1999.
doi:10.1088/0266-5611/15/6/309 Google Scholar
5. Yee, K. S., "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
6. Christopoulos, C., The Transmission Line Modelling Method: TLM, IEEE Press, 1995.
doi:10.1109/9780470546659
7. Holland, R., V. P. Cable, and L. C. Wilson, "Finite-volume time-domain (FVTD) techniques for EM scattering," IEEE Transactions on Electromagnetic Compatibility, Vol. 33, 281-294, Nov. 1991.
doi:10.1109/15.99109 Google Scholar
8. Bennett, C. L. and H. Mieras, "Time domain scattering from open thin conducting surfaces," Radio Science, Vol. 16, 1231-1239, 1981.
doi:10.1029/RS016i006p01231 Google Scholar
9. Mieras, H. and C. L. Bennett, "Space-time integral-equation approach to dielectric targets," IEEE Transactions on Antennas and Propagation, Vol. 30, 2-9, Jan. 1982.
doi:10.1109/TAP.1982.1142753 Google Scholar
10. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 39, 56-61, Jan. 1991.
doi:10.1109/8.64435 Google Scholar
11. Ergin, A. A., B. Shanker, and E. Michielssen, "Fast transient analysis of acoustic wave scattering from rigid bodies using a two-level plane wave time domain algorithm," Journal of the Acoustical Society of America, Vol. 106, 2405-2416, Nov. 1999.
doi:10.1121/1.428077 Google Scholar
12. Yilmaz, A. E., J. M. Jin, and D. S.Weile, "A fast fourier transform accelerated marching-on-in-time algorithm for electromagnetic analysis," Electromagnetics, Vol. 21, 181-197, Apr. 2001.
doi:10.1080/02726340151105166 Google Scholar
13. Rynne, B. P. and P. D. Smith, "Stability of time marching algorithms for the electric-field integral-equation," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 12, 1181-1205, 1990.
doi:10.1163/156939390X00762 Google Scholar
14. Vechinski, D. A. and S. M. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 40, 661-665, Jun. 1992.
doi:10.1109/8.144600 Google Scholar
15. Sadigh, A. and E. Arvas, "Treating the instabilities in marching-on-in-time method from a different perspective," IEEE Transactions on Antennas and Propagation, Vol. 41, 1695-1702, Dec. 1993.
doi:10.1109/8.273314 Google Scholar
16. Davies, P. J., "A stability analysis of a time marching scheme for the general surface electric field integral equation," Applied Numerical Mathematics, Vol. 27, 33-57, May 1998.
doi:10.1016/S0168-9274(97)00107-4 Google Scholar
17. Manara, G., A. Monorchio, and R. Reggiannini, "A space-time discretization criterion for a stable time-marching solution of the electric field integral equation," IEEE Transactions on Antennas and Propagation , Vol. 45, 527-532, May 1997.
doi:10.1109/8.558668 Google Scholar
18. Bluck, M. J. and S. P. Walker, "Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 45, 894-901, May 1997.
doi:10.1109/8.575643 Google Scholar
19. Pinello, W., A. Ruehli, and A. Cangellaris, "Stabilization of time domain solutions of EFIE based on partial element equivalent circuit models," IEEE Antennas and Propagation Society International Symposium 1997, Vol. 1-4, 966-969, Jul. 1997. Google Scholar
20. Dodson, S., S. P. Walker, and M. J. Bluck, "Implicitness and stability of time domain integral equation scattering analysis," Applied Computational Electromagnetics Society Journal, Vol. 13, 291-301, 1998. Google Scholar
21. Rao, S. M. and T. K. Sarkar, "Implicit solution of time-domain integral equations for arbitrarily shaped dielectric bodies," Microwave and Optical Technology Letters, Vol. 21, 201-205, May 1999.
doi:10.1002/(SICI)1098-2760(19990505)21:3<201::AID-MOP13>3.0.CO;2-1 Google Scholar
22. Sarkar, T. K., W. Lee, and S. M. Rao, "Analysis of transient scattering from composite arbitrarily shaped complex structures," IEEE Transactions on Antennas and Propagation, Vol. 48, 1625-1634, Oct. 2000. Google Scholar
23. Vechinski, D. A., S. M. Rao, and T. K. Sarkar, "Transient scattering from 3-Dimensional arbitrarily-shaped dielectric bodies," Journal of the Optical Society of America, Vol. 11, 1458-1470, Apr. 1994. Google Scholar
24. Pocock, M. D., M. J. Bluck, and S. P. Walker, "Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations," IEEE Transactions on Antennas and Propagation, Vol. 46, 1212-1219, Aug. 1998.
doi:10.1109/8.718577 Google Scholar
25. Yilmaz, A. E., J. M. Jin, and E. Michielssen, "Time domain adaptive integral method for surface integral equations," IEEE Transactions on Antennas and Propagation, Vol. 52, 2692-2708, Oct. 2004. Google Scholar
26. Gres, N. T., A. A. Ergin, E. Michielssen, and B. Shanker, "Volume-integral-equation-based analysis of transient electromagnetic scattering from three-dimensional inhomogeneous dielectric objects," Radio Science, Vol. 36, 379-386, May-Jun. 2001. Google Scholar
27. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Transactions on Antennas and Propagation, Vol. 32, 77-85, Jan. 1984.
doi:10.1109/TAP.1984.1143193 Google Scholar
28. Silvester, P. P. and R. L. Ferrari, Finite Elements for Electrical Engineers, Cambridge University Press, Cambridge, UK, 1990.
29. Peterson, A. F., "Analysis of heterogeneous electromagnetic scatterers --- Research progress of the past decade," Proceedings of the IEEE, Vol. 79, 1431-1441, Oct. 1991. Google Scholar
30. Wilton, D. R., "Review of current status and trends in the use of integral-equations in computational electromagnetics," Electromagnetics, Vol. 12, 287-341, Jul.-Dec. 1992. Google Scholar
31. Volakis, J. L., A. Chatterjee, and L. C. Kempel, "Review of the finite-element method for 3-dimensional electromagnetic scattering," Journal of the Optical Society of America A --- Optics Image Science and Vision, Vol. 11, 1422-1433, Apr. 1994.
doi:10.1364/JOSAA.11.001422 Google Scholar
32. Kottmann, J. P. and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Transactions on Antennas and Propagation, Vol. 48, 1719-1726, Nov. 2000. Google Scholar
33. Yilmaz, A. E., B. Shanker, J. M. Jin, and E. Michielssen, "Efficient solution of time domain volume integral equations using the adaptive integral method," Proceedings of the USNC/CNC/URSI Meeting, 711, Jun. 2003. Google Scholar
34. Harrington, R. F., Field Computations by Moment Methods, Macmillan, New York, 1968.
35. Volakis, J. L. and K. Barkeshli, "Applications of the conjugate radient FFT method to radiation and scattering," Progress In Electromagnetics Research, Vol. 05, 159-239, 1991. Google Scholar
36. Nerukh, A. G., "Evolutionary approach in transient electro-dynamics problems," Radio Science, Vol. 30, 481-491, May-Jun. 1995. Google Scholar
37. Nerukh, A. G., I. V. Scherbatko, and O. N. Rybin, "The direct numerical calculation of an integral volterra equation for an electromagnetic signal in a time-varying dissipative medium," Journal of Electromagnetic Waves and Applications, Vol. 12, 163-176, 1998.
doi:10.1163/156939398X00755 Google Scholar
38. Nerukh, A. G., I. V. Scherbatko, and M. Marciniak, Electromagnetics of Modulated Media with Applications to Photonics, Nat. Inst. Telecommun., Warsaw, Poland, 2001.
39. Fedotov, F. V., A. G. Nerukh, T. A. Benson, and P. Sewell, "Investigation of electromagnetic field in a layer with time-varying medium by volterra intergral equation method," Journal of Lightwave Technology, Vol. 21, 305-314, Jan. 2003.
doi:10.1109/JLT.2003.808652 Google Scholar
40. Al-Jarro, A., P. Sewell, T. M. Benson, and A. Nerukh, "Effective and flexible analysis for propagation in time varying waveguides," Optical and Quantum Electronics, Vol. 36, 133-144, Jan.-Feb. 2004. Google Scholar
41. Benson, T. M., A. Al-Jarro, P. Sewell, V. Janyani, J. D. Paul, and A. Vukovic, "Simulation of nonlinear integrated photonics devices: A comparison of tlm and numerical time domain integral equation approaches," Ultra-wideband, Short-pulse Electromagnetics, Vol. 7, 80-88, 2007. Google Scholar
42. Al-Jarro, A., P. Sewell, T. M. Benson, and A. Vukovic, "A volterra integral equation algorithm on triangulated space time meshes," Proceedings of the 2007 Workshop on Computational Electromagnetics in Time-domain, 1-4, Perugia, 2007.
doi:10.1109/CEMTD.2007.4373541 Google Scholar
43. Al-Jarro, A., P. Sewell, T. M. Benson, and A. Vukovic, "A volterra time-domain integral equation algorithm on unstructured meshes: 3D model," Proceedings of the 25th International Review of Progress in Applied Computational, 792-796, Monterey, Mar. 2009. Google Scholar
44. Al-Jarro, A., P. Sewell, T. M. Benson, and A. Vukovic, "Stabilizing 3D volterra time domain integral equation algorithms," International Symposium on Antennas and Propagation, Bangkok, Oct. 2009. Google Scholar
45. Sarto, M. S. and A. Scarlatti, "Suppression of late-time instabilities in 3D-FDTD analyses by combining digital filtering techniques and efficient boundary conditions," IEEE Transactions on Magnetics, Vol. 37, 3273-3276, Sep. 2001.
doi:10.1109/20.952593 Google Scholar
46. Waldvogel, J., "Newtonian potential of homogeneous polyhedra," Journal of Applied Mathematics and Physics, Vol. 30, 388-398, Mar. 1979.
doi:10.1007/BF01601950 Google Scholar
47. Waldvogel, J., "Newtonian potential of homogeneous cube," Journal of Applied Mathematics and Physics, Vol. 27, 867-871, Nov. 1976. Google Scholar
48. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM --- Part I: Materials with frequency-dependent properties," IEEE Transactions on Antennas and Propagation, Vol. 47, 1528-1534, Oct. 1999. Google Scholar
49. Mie, G., "A contribution to the optics of turbid media: Especially colloidal metal solutions," Annals of Physics, Vol. 25, 377-445, 1908. Google Scholar
50. Oppenheim, A. V. and R. W. Schafer, Discrete-time Signal Processing, Englewood Cliffs, Prentice Hall, New Jersey, 1989.