Vol. 110
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-17
Analyzing the Multilayer Optical Planar Waveguides with Double-Negative Metamaterial
By
Progress In Electromagnetics Research, Vol. 110, 163-178, 2010
Abstract
In this study, a general method for analyzing the multilayer optical planar waveguides with photonic metamaterial is presented. The propagation characteristics of TE waves guided by the film with both the permittivity and permeability less than zero are investigated theoretically. The formulae for the electric fields of TE modes in this structure have been proposed. Typical numerical results for dispersion characteristics are shown. The analytical and numerical results show excellent agreement.
Citation
Chih-Wen Kuo, Shih-Yuan Chen, Yaw-Dong Wu, and Mao-Hsiung Chen, "Analyzing the Multilayer Optical Planar Waveguides with Double-Negative Metamaterial," Progress In Electromagnetics Research, Vol. 110, 163-178, 2010.
doi:10.2528/PIER10101405
References

1. Castaldi, G., I. Gallina, V. Galdi, A. Alù, and N. Engheta, "Cloak/anti-cloak interactions," Opt. Express, Vol. 17, 3101-3114, 2009.
doi:10.1364/OE.17.003101        Google Scholar

2. Awad, M., M. Nagel, and H. Kurz, "Negative-index metamaterial with polymer-embedded wire-pair structures at terahertz frequencies," Opt. Lett., Vol. 33, 2683-2685, 2008.
doi:10.1364/OL.33.002683        Google Scholar

3. Duan, Z.-Y., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604        Google Scholar

4. Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on s-ring resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.
doi:10.2528/PIER08062105        Google Scholar

5. Wu, W. Y., A. Lai, C. W. Kuo, K. M. K. H. Leong, and T. Itoh, "Efficient FDTD method for analysis of mushroom-structure based left-handed materials," IET Microwaves, Antennas & Propagation, Vol. 1, 100-107, 2007.
doi:10.1049/iet-map:20050230        Google Scholar

6. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780nm wavelength," Opt. Lett., Vol. 32, 53-55, 2007.
doi:10.1364/OL.32.000053        Google Scholar

7. Yu, G. X., T.-J. Cui, W. X. Jiang, X. M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 583-592, 2009.
doi:10.1163/156939309788019723        Google Scholar

8. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, 953-962, 2009.
doi:10.1163/156939309788355289        Google Scholar

9. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401        Google Scholar

10. Wang, M.-Y., J. Xu, J.Wu, B.Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602        Google Scholar

11. Wang, Z. L., H. T. Jiang, Y. H. Li, and H. Chen, "Enhancement of self-collimated fields in photonic crystals consisting of two kinds of single-negation materials," Opt. Express, Vol. 18, 14311-14318, 2010.
doi:10.1364/OE.18.014311        Google Scholar

12. Mocella, V., S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, "Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial," Phys. Rev. Lett., Vol. 102, 133902, 2009.
doi:10.1103/PhysRevLett.102.133902        Google Scholar

13. Al-Naib, I. A. I., C. Jansen, and M. Koch, "Single metal layer CPW metamaterial band-pass filter," Progress In Electromagnetics Research Letters, Vol. 17, 153-161, 2010.
doi:10.2528/PIERL10081103        Google Scholar

14. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1385-1395, 2009.
doi:10.1163/156939309789108606        Google Scholar

15. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606        Google Scholar

16. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coated with a shell of double-negative metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.
doi:10.2528/PIER08031604        Google Scholar

17. Si, L.-M. and X. Lv, "CPW-FED multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404        Google Scholar

18. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 056625, 2001.
doi:10.1103/PhysRevE.64.056625        Google Scholar

19. Milonni, P. W. and G. J. Maclay, "Quantized-field description of light negative-index media," Opt. Commun., Vol. 228, 161-165, 2003.
doi:10.1016/j.optcom.2003.09.080        Google Scholar

20. Mirza, I. O., J. N. Sabas, S. Shi, and D. W. Prather, "Experimental demonstration of metamaterial based phase modulation," Progress In Electromagnetics Research, Vol. 93, 1-12, 2009.
doi:10.2528/PIER09050412        Google Scholar

21. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306        Google Scholar

22. Jose, J., "Controlled coupling of planar waveguides using a negative-refractive-index medium," J. Phys. B: At. Mol. Opt. Phys., Vol. 40, 497-505, 2007.
doi:10.1088/0953-4075/40/3/005        Google Scholar

23. Lomakin, V., Y. Fainman, Y. Urzhumov, and G. Shvets, "Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites," Opt. Express, Vol. 14, 11164-11177, 2006.
doi:10.1364/OE.14.011164        Google Scholar

24. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative-refractive-index waveguides," Phys. Rev. E, Vol. 67, 057602, 2003.
doi:10.1103/PhysRevE.67.057602        Google Scholar

25. He, Y., Z. Cao, and Q. Shen, "Guided optical modes in asymmetric left-hand waveguides," Opt. Commun., Vol. 245, 125-135, 2005.
doi:10.1016/j.optcom.2004.09.067        Google Scholar

26. Wu, Y. D., M. L. Huang, M. H. Chen, and R. Z. Tasy, "All-optical switch based on the local nonlinear Mach-Zehnder interferometer," Opt. Express, Vol. 15, 9883-9892, 2007.
doi:10.1364/OE.15.009883        Google Scholar

27. Wu, Y. D., T. T. Shih, and M. H. Chen, "New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer," Opt. Express, Vol. 16, 248-257, 2008.
doi:10.1364/OE.16.000248        Google Scholar

28. Kaman, V., X. Zheng, S. Yuan, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, "A 32 × 10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs," IEEE Photonics Technol. Lett., Vol. 17, 1977-1979, 2005.
doi:10.1109/LPT.2005.853262        Google Scholar

29. Ttrutschel, U., F. Lederer, and M. Golz, "Nonlinear guided waves in multilayer systems," IEEE J. Quantum Electron., Vol. 25, 194-200, 1989.
doi:10.1109/3.16262        Google Scholar

30. Radic, S., N. George, and G. P. Agrawal, "Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures," J. Opt. Soc. Am. B, Vol. 12, 671-680, 1995.
doi:10.1364/JOSAB.12.000671        Google Scholar

31. Radic, S., N. George, and G. P. Agrawal, "Analysis of nonuniform nonlinear distributed feedback structures: Generalized transfer matrix method," IEEE J. Quantum Electron., Vol. 31, 1326-1336, 1995.
doi:10.1109/3.391098        Google Scholar

32. She, S. and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear caldding," Opt. Commun., Vol. 161, 141-148, 1999.
doi:10.1016/S0030-4018(99)00004-8        Google Scholar

33. Jovanoski, Z., I. N. Towers, N. A. Ansari, and R. A. Sammut, "Approximate analysis of circular bends in nonlinear planar waveguides," Opt. Commun., Vol. 244, 399-409, 2005.
doi:10.1016/j.optcom.2004.09.036        Google Scholar

34. Nguyen, T. G. and A. Mitchell, "Analysis of optical waveguides with multilayer dielectric coatings using plane wave expansion," J. Lightwave Technol., Vol. 24, 635-642, 2006.
doi:10.1109/JLT.2005.860158        Google Scholar

35. Lecamp, G., J. P. Hugonin, and P. Lalanne, "Theoretical and computational concepts for periodic optical waveguides," Opt. Express, Vol. 15, 11042-11060, 2007.
doi:10.1364/OE.15.011042        Google Scholar

36. Sidorov, A. I., "Radiation modulation via violation of total internal reflection with excitation of a waveguide mode," Tech. Phys., Vol. 53, 732-736, 2008.
doi:10.1134/S1063784208060108        Google Scholar

37. Wu, Y. D., M. H. Chen, C. K. Kuo, S. Y. Chen, and C. F. Chang, "The study of multilayer planar optical waveguide structure with nonlinear cladding," Opt. Quantum Electron., Vol. 40, 495-512, 2008.
doi:10.1007/s11082-008-9235-4        Google Scholar

38. Wu, Y. D., M. H. Chen, and H. J. Tasi, "Analyzing multilayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B, Vol. 19, 1737-1745, 2002.
doi:10.1364/JOSAB.19.001737        Google Scholar

39. Wu, Y. D., "Analyzing multilayer optical waveguides with a localized arbitrary nonlinear guiding film," IEEE J. Quantum Electron., Vol. 40, 529-540, 2004.        Google Scholar

40. Wu, Y. D. and M. H. Chen, "Method for analyzing multilayer nonlinear optical waveguide," Opt. Express, Vol. 13, 7982-7995, 2005.
doi:10.1364/OPEX.13.007982        Google Scholar

41. Kuo, C. W., S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, "Analyzing multilayer optical waveguide with all nonlinear layers," Opt. Express, Vol. 15, 2499-2516, 2007.
doi:10.1364/OE.15.002499        Google Scholar

42. Kuo, C. W., S. Y. Chen, Y. D. Wu, M. H. Chen, and C. F. Chang, "Analysis and calculations of forbidden regions for transverse-electric-guided waves in the three-layer planar waveguide with photonic metamaterial," Fiber Integrated Opt., Vol. 29, 305-314, 2010.        Google Scholar

43. Doer, C. R. and H. Kogelnik, "Dielectric waveguide theory," J. Lightwave Technol., Vol. 26, 1176-1187, 2008.
doi:10.1109/JLT.2008.923632        Google Scholar