1. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/0470020466
2. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
3. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
4. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336 Google Scholar
5. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032 Google Scholar
6. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2267, Sep. 2009.
doi:10.1109/TMTT.2009.2027160 Google Scholar
7. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701 Google Scholar
8. Le Floch, J. M., F. Houndonougbo, V. Madrangeas, D. Cros, M. Guilloux-Viry, and W. Peng, "Thin film materials characterization using TE modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 549-559, 2009.
doi:10.1163/156939309787612293 Google Scholar
9. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "Measuring complex permeability of ferromagnetic thin films using microstrip transmission method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1303-1311, 2009.
doi:10.1163/156939309789108598 Google Scholar
10. Challa measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting, R. K., D. Kajfez, J. R. Gladden, et al. "Permittivity," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008. Google Scholar
11. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid crowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402 Google Scholar
12. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501 Google Scholar
13. Hasar, U. C., "Unique retrieval of complex permittivity of low-loss dielectric materials from transmission-only measurements," IEEE Geosi. Remote Sens. Lett., Vol. 8, No. 3, 561-563, 2011. Google Scholar
14. Hasar, U. C., "Accurate complex permittivity inversion from measurements of a sample partially filling a waveguide aperture," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 2, 451-457, 2010.
doi:10.1109/TMTT.2009.2038444 Google Scholar
15. Hasar, U. C., "A generalized formulation for permittivity extraction of low-to-high-loss materials from transmission measure ment," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 411-418, 2010.
doi:10.1109/TMTT.2009.2038443 Google Scholar
16. Hasar, U. C., "A new microwave method for electrical characterization of low-loss materials," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 12, 801-803, 2009.
doi:10.1109/LMWC.2009.2033512 Google Scholar
17. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 788-790, 2008.
doi:10.1109/LMWC.2008.2007699 Google Scholar
18. Kharkovsky, S. N., M. F. Akay, U. C. Hasar, and C. D. Atis, "Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens," IEEE Trans. Instrum. Meas., Vol. 51, No. 6, 1210-1218, 2002.
doi:10.1109/TIM.2002.808081 Google Scholar
19. Rodriguez-Vidal, M. and E. Martin, "Contribution to numerical methods for calculation of complex dielectric permittivities," Electron. Lett., Vol. 6, No. 16, 510, 1970.
doi:10.1049/el:19700354 Google Scholar
20. Ness, J., "Broad-band permittivity measurements using the semi-automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1222-1226, 1985.
doi:10.1109/TMTT.1985.1133198 Google Scholar
21. Ball, J. A. R. and B. Horsfield, "Resolving ambiguity in broadband waveguide permittivity measurements on moist materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 390-392, 1998.
doi:10.1109/19.744179 Google Scholar
22. Xia, S., Z. Xu, and X. Wei, "Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency," Rev. Sci. Instrum., Vol. 80, No. 11, 114703-1-4, 2009.
doi:10.1063/1.3237244 Google Scholar
23. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805 Google Scholar
24. Buyukozturk, O., T.-Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004 Google Scholar
25. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted flelds by enforcing causality," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2224-2230, Oct. 2007.
doi:10.1109/TMTT.2007.906473 Google Scholar
26. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A freespace method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 38, No. 3, 783-793, Jun. 1989.
doi:10.1109/19.32194 Google Scholar
27. Hasar, U. C., "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 9, 2129-2135, Sep. 2008.
doi:10.1109/TMTT.2008.2002229 Google Scholar
28. Hasar , U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09011702 Google Scholar
29. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 471-477, Feb. 2009.
doi:10.1109/TMTT.2008.2011242 Google Scholar
30. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.2528/PIER09041405 Google Scholar
31. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1563-1574, Aug. 2010.
doi:10.1163/156939310792149759 Google Scholar
32. Hasar, U. C. and E. A. Oral, "A metric function for fast and accurate permittivity determination of low-to-high-loss materials from reflection measurements," Progress In Electromagnetics Research, Vol. 107, 397-412, 2010.
doi:10.2528/PIER10071308 Google Scholar
33. Hasar, U. C., "Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies," Progress In Electromagnetics Research, Vol. 109, 107-121, 2010.
doi:10.2528/PIER10083006 Google Scholar
34. Hasar, U. C., "A microwave method for accurate and stable retrieval of constitutive parameters of low- and medium-loss materials," IEEE Microw. Wireless Compon. Lett., Vol. 20, Dec. 2010. Google Scholar
35. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 1595-1601, Jun. 2009.
doi:10.1109/TMTT.2009.2020779 Google Scholar
36. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 419-421, Jun. 2009.
doi:10.1109/LMWC.2009.2020045 Google Scholar
37. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606 Google Scholar
38. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USPEKHI,, Vol. 10, No. 4, 509-514, Jan.--eb. 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
39. Li, Z., K. Aydin, and E. Ozbay, "Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients," Phys. Rev. E, Vol. 79-7, 2009. Google Scholar
40. Barroso, J. J., P. J. Castro, and J. P. Leite Neto, "Experiments on wave propagation at 6.0 GHz in a left-handed waveguide," Microw. Opt. Technol. Lett., Vol. 52, No. 10, 2175-2178, Oct. 2010.
doi:10.1002/mop.25435 Google Scholar
41. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, Jun. 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
42. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, No. 22, 4785-4809.
doi:10.1088/0953-8984/10/22/007 Google Scholar
43. Pendry, J. B., A. J. Hold, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002 Google Scholar
44. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-1-5, 2002. Google Scholar
45. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B, Vol. 62, No. 16, 10696-10705, Oct. 2000.
doi:10.1103/PhysRevB.62.10696 Google Scholar
46. Smith, D. R., D. C. Vier, T. Koschhy, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, No. 3, 036617-1-11, 2005. Google Scholar
47. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B, Vol. 65, No. 14, 144440-1-6, Apr. 2002.
doi:10.1103/PhysRevB.65.144440 Google Scholar
48. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, Apr. 2004.
doi:10.1063/1.1695439 Google Scholar
49. Markos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Opt. Express, Vol. 11, No. 7, 649-661, Apr. 2003.
doi:10.1364/OE.11.000649 Google Scholar
50. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1516-1529, Jul. 2003.
doi:10.1109/TAP.2003.813622 Google Scholar
51. Chen, X., T. M. Gregorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608-1-7, 2004. Google Scholar
52. Grzegorczyk, T. M., X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 83-113, 2005.
doi:10.2528/PIER04040901 Google Scholar
53. Chen, X., T. M. Grzegorczyk, and J. A. Kong, "Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium," Progress In Electromagnetics Research, Vol. 60, 1-18, 2006.
doi:10.2528/PIER05120601 Google Scholar
54. Chen, X., B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E, Vol. 71, 046610-1-9, 2005. Google Scholar
55. Constantine, A. B., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.