Vol. 112
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-18
Phase Shift Defect Modes in One-Dimensional Asymmetrical Photonic Structures Consisting of Two Rugate Segments with Different Periodicities
By
Progress In Electromagnetics Research, Vol. 112, 257-272, 2011
Abstract
A theoretical study of optical properties of phase shift defects in one-dimensional asymmetrical photonic structures consisting of two rugate segments with different periodicities at both normal and oblique incidence is presented. Using the propagation matrix method we numerically calculated transmittance spectra, defect wavelengths, energy density distributions, and group velocities for TE and TM waves, respectively. Our study shows that by adjusting the periodicity of one rugate segment, the defect wavelengths can be shifted toward either a shorter wavelength or a longer wavelength. The differences of the energy density distributions of TE and TM waves at different angles of incidence are explained with the help of group velocity. Effects of the change of the period of one rugate segment on the peak energy densities of defect modes and minimum group velocities at different angles of incidence are also investigated.
Citation
Yanyun Liu, and Zhao Lu, "Phase Shift Defect Modes in One-Dimensional Asymmetrical Photonic Structures Consisting of Two Rugate Segments with Different Periodicities," Progress In Electromagnetics Research, Vol. 112, 257-272, 2011.
doi:10.2528/PIER10121106
References

1. Van Popta, A. C., M. M. Hawkeye, J. C. Sit, and M. J. Brett, "Gradient-index narrow-bandpass filter fabricated with glancingangle deposition," Opt. Lett., Vol. 29, 2545-2547, 2004.
doi:10.1364/OL.29.002545        Google Scholar

2. Hawkeye, M. M. and M. J. Brett, "Narrow bandpass optical optical filters fabricated with one-dimensionally periodic inhomogeneous thin films ," J. Appl. Phys., Vol. 100, 044322, 2006.
doi:10.1063/1.2335397        Google Scholar

. Hawkeye, M. M. and M. J. Brett, "Glancing angle deposition: Fabrication properites, and applications of micro- and nanostructured thin films," J. Vac. Sci. Technol. A, Vol. 25, 1317-1335, 2007.
doi:10.1116/1.2764082        Google Scholar

4. Tabunshchyk, K. V., M. M. Hawkeye, A. Kovalenko, and M. J. Brett, "Three-dimensional simulation of periodically structured thin films with uniaxial symmetry," J. Phys. D: Appl. Phys., Vol. 40, 4936-4942, 2007.
doi:10.1088/0022-3727/40/16/027        Google Scholar

5. Brett, M. J. and M. M. Hawkeye, "Materials science. New materials at a glance," Science, Vol. 319, 1192-1193, 2008.
doi:10.1126/science.1153910        Google Scholar

6. Hawkeye, M. J., R. Joseph, J. C. Sit, and M. J. Brett, "Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition," Opt. Express, Vol. 18, 13220-13226, 2010.
doi:10.1364/OE.18.013220        Google Scholar

7. Liu, Y. and Z. Lu, "Properties of phase shift defects in one-dimensional rugate photonic structures," Progress In Electromagnetics Research, Vol. 111, 213-228, 2011.
doi:10.2528/PIER10110312        Google Scholar

8. Estevez, J. O., J. Arriaga, A. Mendez Blas, and V. Agarwal, "Omnidirectional photonic bandgaps in porous silicon based mirrors with a Gaussian profile refractive index," Appl. Phys. Lett., Vol. 93, 191915, 2008.
doi:10.1063/1.3028073        Google Scholar

9. Estevez, J. O., J. Arriaga, A. Mendez Blas, and V. Agarwal, "Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index," Appl. Phys. Lett., Vol. 94, 061914, 2009.
doi:10.1063/1.3081113        Google Scholar

10. De Stefano, L., L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, "Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology," IEEE Trans. Nanotechnol., Vol. 543, 49-54, 2004.
doi:10.1109/TNANO.2004.824019        Google Scholar

11. Imenes, A. G. and D. Mills, "Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: A review," Sol. Energy Mater. Sol. Cells, Vol. 84, 19-69, 2004.
doi:10.1016/j.solmat.2004.01.038        Google Scholar

12. Imenes, A. G., D. Buie, and D. R. Mckenzie, "The design of broadband, wide-angle interference filters for solar concentrating systems," Sol. Energy Mater. Sol. Cells, Vol. 90, 1579-1606, 2006.
doi:10.1016/j.solmat.2005.08.007        Google Scholar

13. Imenes, A. G. and D. R. McKenzie, "Flat-topped broadband rugate filters," Applied Optics, 7841-7850, 2006.
doi:10.1364/AO.45.007841        Google Scholar

14. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modling the Flow of Light, 2nd Ed., Princeton University Press, 2008.

15. Yariv, A. and P. Yeh, Photonics, Oxford University Press, 2007.

16. Deopura, M., C. K. Ullal, T. Temelkuran, and Y. Fink, Dielectric omnidirectional visible reflector, Vol. 26, 1197-1199, Opt. Lett., 2001.

17. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679        Google Scholar

18. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573        Google Scholar

19. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystals heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903        Google Scholar

20. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omnidirection reflection in one-dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601        Google Scholar

. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004        Google Scholar

22. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Design of photonic band gap filter," Progress In Electromagnetics Research, Vol. 81, 225-235, 2008.
doi:10.2528/PIER08010902        Google Scholar

23. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004        Google Scholar

24. Banerjee, A., "Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
doi:10.2528/PIERL09080101        Google Scholar

25. Wu, C.-J., B.-H. Chu, and M.-H. Weng, "Analysis of optical reflection in a chirped distributed Bragg reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787604643        Google Scholar

26. Wu, C.-J., B.-H. Chu, M.-T. Weng, and H.-L. Lee, "Enhancement of bandwidth in a chirped quarter-wave dielectric mirror," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 437-447, 2009.
doi:10.1163/156939309787612365        Google Scholar

27. Wu, C.-J., J.-J. Liao, and T.-W. Chang, "Tunable multilayer Fabry-Perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010.        Google Scholar

28. Wu, C.-J. and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706        Google Scholar

29. Wu, C.-J., Y.-N. Rau, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610        Google Scholar

30. Hsu, H. T., T. W. Chang, T. J. Yang, B. H. Chu, and C. J. Wu, "Analysis of wave properties in photonic crystal narrowband filters with left-handed defect," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2285-2298, 2010.
doi:10.1163/156939310793699073        Google Scholar

31. Dai, G. L. and M. Y. Xia, "An investigation of quarter-wavelength square-spiral resonator and its applications to miniaturized bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1303-1313, 2010.
doi:10.1163/156939310791958699        Google Scholar

33. Archuleta-Garcia, R., D. Moctezuma-Enriquez, and J. Manzanares-Martinez, "Enlargement of photonic band gap in porous silicon dielectric mirrors," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 351-361, 2010.
doi:10.1163/156939310790735732        Google Scholar

33. Manzanares-Martinez, J., R. Archuleta-Garcia, P. Castro-Garay, D. Moctezuma-Enriquez, and E. Urrutia-Banuelos, "One-dimensional photonic heterostructure with broadband omnidirectional reflection," Progress In Electromagnetics Research, 105-117, 2011.
doi:10.2528/PIER10110404        Google Scholar

34. Southwell, W., "Using apodization functions to reduce sidelobes in rugate filters," Applied Optics, Vol. 28, 5091-5094, 1989.
doi:10.1364/AO.28.005091        Google Scholar

35. Abu-Safia, H., A. Al-Sharif, and I. Abu-Aljarayesh, "Rugate filter sidelobe suppression using half-apodization," Applied Optics, Vol. 32, 4831-4835, 1993.
doi:10.1364/AO.32.004831        Google Scholar

36. Kennedy, S. and M. M. Brett, "Porous broadband antireflection coating by glancing angle deposition," Applied Optics, Vol. 42, 4573-4579, 2003.
doi:10.1364/AO.42.004573        Google Scholar

37. Vernhes, R., O. Zabeida, J. Klemberg-Spaieha, and L. Martinu, "Single-material inhomogeneous optical filters based on microstructural gradients in plasma-deposited silicon nitride," Applies Optics, Vol. 43, 97-103, 2004.
doi:10.1364/AO.43.000097        Google Scholar

38. Berreman, D. W., "Optics in stratified and anisotropic media: 4 × 4 matrix formulations," J. Opt. Soc. Am., Vol. 62, 502-510, 1972.
doi:10.1364/JOSA.62.000502        Google Scholar

39. Abdulhalim, I., "Analytical propagtion matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A: Pure Appl. Opt., Vol. 1, 646-653, 1999.
doi:10.1088/1464-4258/1/5/311        Google Scholar

40. Lu, Z., "Accurate and efficient calculation of light propagation in one-dimensional inhomogeneous anisotropic media through extrapolation," J. Opt. Soc. Am. A, Vol. 24, 236-242, 2007.
doi:10.1364/JOSAA.24.000236        Google Scholar

41. Lu, Z., "Accurate calculation of reflectance spectra for thick onedimensional inhomogeneous optical structures and media: Stable propagation matrix method," Opt. Lett., Vol. 33, 1948-1950, 2008.
doi:10.1364/OL.33.001948        Google Scholar

42. Lu, Z., "Efficient 4 × 4 propagation matrix method using a fourth-order symplectic integrator for the optics of one-dimensional continuous inhomogeneous materials," Progress In Electromagnetics Research Letters, Vol. 14, 1-9, 2010.
doi:10.2528/PIERL10031501        Google Scholar

43. Bendickson, J. M. and J. P. Dowling, "Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E., Vol. 53, 4107-4121, 1996.
doi:10.1103/PhysRevE.53.4107        Google Scholar

44. Cheng, J.-Y. and L.-W. Cheng, "Polarization-dependent filters based on chiral photonic structures with defects," J. Opt. A: Pure and Applied Optics, Vol. 7, 558-566, 2005.
doi:10.1088/1464-4258/7/10/007        Google Scholar

45. Southwell, W. H., "Spectral response calculations of rugate filters using coupled-wave theory," J. Opt. Soc. Am. A,, Vol. 5, 1558-1564, 1988.
doi:10.1364/JOSAA.5.001558        Google Scholar

46. Biot, M. A., "General theorems on the equivalence of group velocity and energy transport," Phys. Rev., Vol. 105, No. 4, 1129-1137, 1957.
doi:10.1103/PhysRev.105.1129        Google Scholar

47. Gerasik, V. and M. Stastna, "Complex group velocity and energy transport in absorbing media," Phys. Rev. E., Vol. 81, 056602, 2010.
doi:10.1103/PhysRevE.81.056602        Google Scholar