1., Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847 Google Scholar
2. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 3966, Oct. 2000. Google Scholar
3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Oct. 2006. Google Scholar
4. Kozyrev, A. B., C. Qin, I. V. Shadrivov, Y. S. Kivshar, I. L. Chuang, and D. W. van der Weide, "Wave scattering and splitting by magnetic metamaterials," Optics Express, Vol. 15, 11714-11722, Aug. 2007.
doi:10.1364/OE.15.011714 Google Scholar
5. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magnetoinductive waves in one, two, and three dimensions," Journal of Applied Physics, Vol. 92, 6252-6261, Nov. 2002. Google Scholar
6. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, 2009.
7. Carbonell, J., V. E. Boria, and D. Lippens, "Nonlinear effects in split ring resonators loaded with heterostructure barrier varactors," Microwave Optical Technology Letters,, Vol. 50, 474-479, Feb. 2008.
doi:10.1002/mop.23122 Google Scholar
8. Aznabet, M., M. Navarro-Cía, S. A. Kuznetsov, A. V. Gelfand, N. I. Fedorinina, Y. G. Goncharov, M. Beruete, O. El Mrabet, and M. Sorolla, "Polypropylene-substrate-based SRR- and CSRR metasurfaces for submillimeter waves," Optics Express, Vol. 16, No. 22, 18312-18319, Oct. 2008.
doi:10.1364/OE.16.018312 Google Scholar
9. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, 419-422, Oct. 2003. Google Scholar
10. Kanté , B., S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, "Controlling plasmon hybridization for negative refraction metamaterials," Physical Review B, Vol. 79, 075121, Feb. 2009.
doi:10.1103/PhysRevB.79.075121 Google Scholar
11. Guven, K., M. D. Caliskan, and E. Ozbay, "Experimental observation of left-handed transmission in a bilayer metamaterial under normal-to-plane propagation," Optics Express, Vol. 14, No. 14, 8685-8693, Sep. 2006.
doi:10.1364/OE.14.008685 Google Scholar
12. Wang, S., F. Garet, K. Blary, C. Croënne, E. Lheurette, J. L. Coutaz, and D. Lippens, "Composite left/right-handed stacked hole arrays at submillimeter wavelengths," Journal of Applied Physics, Vol. 107, 074510, 2010.
doi:10.1063/1.3374703 Google Scholar
13. Croenne, C., F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, "Left handed dispersion of a stack of subwavelength hole metal arrays at terahertz frequencies," Applied Physics Letters, Vol. 94, Apr. 2009. Google Scholar
14. Beruete, M., M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays," Optics Express, Vol. 14, 5445-5455, Jun. 2006.
doi:10.1364/OE.14.005445 Google Scholar
15., Ortuño, R., C. García-Meca, F. J. Rodriguez-Fortuño, J. Martí, and A. Martínez, "Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays," Physical Review B, Vol. 79, 075425, Feb. 2009. Google Scholar
16. Alú, A. and N. Engheta, "Evanescent growth and tunneling through stacks of frequency-selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 417-420, 2005.
doi:10.1109/LAWP.2005.859381 Google Scholar
17. Shamonina, E., "Slow waves in magnetic metamaterials: History, fundamentals and applications," Physica Status Solidi, Vol. 245, No. 8, 1471-1482, Jun. 2008.
doi:10.1002/pssb.200844125 Google Scholar
18. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, 31-37, Jan. 2008.
doi:10.1038/nmat2072 Google Scholar