1. Chang, K. and C. Sun, "Millimeter-wave power-combining techniques," IEEE Trans. Microwave Theory Tech., Vol. 31, 91-107, Feb. 1983.
doi:10.1109/TMTT.1983.1131443 Google Scholar
2. Russell, K. J., "Microwave power combining techniques," IEEE Trans. Microwave Theory Tech., Vol. 27, 472-478, May 1979.
doi:10.1109/TMTT.1979.1129651 Google Scholar
3. Dydyk, M., "Efficient power combining," IEEE Trans. Microwave Theory Tech., 755-762, Jul. 1980. Google Scholar
4. White, W. M., R. M. Gilgenbach, and M. C. Jones, "Radio frequency priming of a long-pulse relativistic magnetron," IEEE Trans. on Plasma Science, Vol. 34, No. 3, 2006.
doi:10.1109/TPS.2006.875829 Google Scholar
5. Höft, M., J. Weinzierl, and R. Judaschke, "Broadband analysis of holographic power combining circuits," International Journal of Infrared and Millimeter Waves, Vol. 23, No. 7, Jul. 2002. Google Scholar
6. Magath, T. and M. Höft, "A two-dimensional quasi-optical power combining oscillator array with external injection locking," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 2, 2004.
doi:10.1109/TMTT.2003.821932 Google Scholar
7. Batty, W., C. E. Christoffersen, and J. F. Whitaker, "Global coupled EM-electrical-thermal simulation and experimental validation for a spatial power combining MMIC array," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 12, Dec. 2002.
doi:10.1109/TMTT.2002.805142 Google Scholar
8. Shahabadi, M. and K. Schünemann, "Millimeter-wave holographic power splitting/combining," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, 1997.
doi:10.1109/22.643836 Google Scholar
9. Judaschke, R., M. Höft, and K. Schünemann, "Quasi-optical 150-GHz power combining oscillator," EEE Microwave and Wireless Components Letter, Vol. 15, No. 5, 2005. Google Scholar
10. Rutledge, D. B., N.-S. Cheng, R. A. York, R. M. Weikle, and M. P. DeLisio, "Failures in power-combining arrays," IEEE Trans. Microwave Theory Tech., Vol. 47, 1077-1082, 1999.
doi:10.1109/22.775439 Google Scholar
11. Schamiloglu, E., "High power microwave sources and applications," IEEE Trans. Microwave Theory Tech., 2004. Google Scholar
12. Levine, J. S., N. Aiello, J. Benford, and B. Harteneck, "Design and operation of a module of phase-locked relativistic magnetrons," J. Appl. Phys., Vol. 70, No. 5, Sep. 1991.
doi:10.1063/1.349347 Google Scholar
13. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekh1, Vol. 10, No. 4, 509-514, Jan.-Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
14. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 6, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
15. Huangfu, J., L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of ω-like metallic patterns," Appl. Phys. Lett., Vol. 84, No. 9, 1537-1539, Mar. 2004.
doi:10.1063/1.1655673 Google Scholar
16. Ran, L.-X., H.-F. Jiang Tao, H. Chen, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-hand metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502 Google Scholar
17. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Leters, Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
18. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
19. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
doi:10.2528/PIER09112002 Google Scholar
20. Cheng, Q., W. X. Jiang, and T.-J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705 Google Scholar
21. Starr, A. F. and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 2006. Google Scholar
22. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902 Google Scholar
23. Wu, Q., P. Pan, F.-Y. Meng, L.-W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A, Vol. 87, 151-156, 2007.
doi:10.1007/s00339-006-3820-9 Google Scholar
24. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701 Google Scholar
25. Hrabar, S., D. Bonefacic, and D. Muha, "Numerical and experimental investigation of horn antenna with embedded ENZ metamaterial lens," Applied Electromagnetics and Communications, 24-26, Sep. 2007. Google Scholar
26. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 2007. Google Scholar
27. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, 2004. Google Scholar
28. Yu, Y., L. F. Shen, L. X. Ran, T. Jiang, and J. T. Huangfu, "Directive emission based on anisotropic metamaterials," Phys. Rev. A, Vol. 77, 2008. Google Scholar
29. Wu, Q., P. Pan, F. Y. L. Meng, W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Appl. Phys. A, Vol. 87, 151-156, 2007.
doi:10.1007/s00339-006-3820-9 Google Scholar
30. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289 Google Scholar
31. Wang, B. and K. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103 Google Scholar
32. Weng, Z. B., X. M. Wang, Y. Song, Y. C. Jiao, and F. S. Zhang, "A directive patch antenna with arbitrary ring aperture lattice metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1283-1291, 2009. Google Scholar