1. Stillinger, F. H., "Axiomatic basis for spaces with noninteger dimension," J. Math. Phys., Vol. 18, No. 6, 1224-1234, 1977.
doi:10.1063/1.523395 Google Scholar
2. He, X., "Anisotropy and isotropy: A model of fraction-dimensional space," Solid State Commun., Vol. 75, 111-114, 1990.
doi:10.1016/0038-1098(90)90352-C Google Scholar
3. Muslih, S. and D. Baleanu, "Fractional multipoles in fractional space," Nonlinear Analysis: Real World Applications, Vol. 8, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001 Google Scholar
4. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058 Google Scholar
5. Tarasov, V. E., "Electromagnetic fields on fractals," Modern Phys. Lett. A, Vol. 21, No. 20, 1587-1600, 2006.
doi:10.1142/S0217732306020974 Google Scholar
6. Palmer, C. and P. N. Stavrinou, "Equations of motion in a noninteger-dimension space," J. Phys. A, Vol. 37, 6987-7003, 2004.
doi:10.1088/0305-4470/37/27/009 Google Scholar
7. Mandelbrot, B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.
8. Willson, K. G., "Quantum field-theory, models in less than 4 dimensions," Phys. Rev. D, Vol. 7, No. 10, 2911-2926, 1973.
doi:10.1103/PhysRevD.7.2911 Google Scholar
9. Zeilinger, A. and K. Svozil, "Measuring the dimension of space-time," Phys. Rev. Lett., Vol. 54, No. 24, 2553-2555, 1985.
doi:10.1103/PhysRevLett.54.2553 Google Scholar
10. Miller, K. S. and B. Ross, An Introduction to the Fractional Integrals and Derivatives-theory and Applications, Gordon and Breach, Longhorne, PA, 1993.
11. Engheta, N., "Fractional curl operator in electromagnetics," Microwave Opt. Tech. Lett., Vol. 17, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E Google Scholar
12. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801 Google Scholar
13. Engheta, N., "Use of fractional integration to propose some Fractional" solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996. Google Scholar
14. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010. Google Scholar
15. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space,", Vol. 114, 255-269, 2011. Google Scholar
16. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.
doi:10.2528/PIER09060801 Google Scholar
17. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional dual/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2008.
doi:10.2528/PIER08081201 Google Scholar
18. Naqvi, Q. A., "Fractional dual interface in chiral nihility medium," Progress In Electromagnetics Research Letters, Vol. 8, 135-142, 2009.
doi:10.2528/PIERL09032405 Google Scholar
19. Naqvi, Q. A., "Fractional dual solutions in grounded chiral nihility slab and their effect on outside fields," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 773-784, 2009.
doi:10.1163/156939309788019958 Google Scholar
20. Naqvi, A., S. Ahmed, and Q. A. Naqvi, "Perfect electromagnetic conductor and fractional dual interface placed in a chiral nihility medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1991-1999, 2010. Google Scholar