1. Balazs, A. C., T. Emrick, and T. P. Russell, "Nanoparticle polymer composites: Where two small worlds meet," Science, Vol. 314, 1107-1110, 2006.
doi:10.1126/science.1130557 Google Scholar
2. Shen, Y., Z. X. Yue, and M. Li, "Enhanced initial permeability and dielectric constant in a double-percolating Ni0.3Zn0.7Fe1.95O4-Ni-polymer composite," Adv. Func. Mat., Vol. 15, 1100-1103, 2005.
doi:10.1002/adfm.200500045 Google Scholar
3. Dang, Z. M., Y. H. Lin, and C. W. Nan, "Novel ferroelectric polymer composite with high dielectric constants," Adv. Mat., Vol. 15, 1625-1629, 2003.
doi:10.1002/adma.200304911 Google Scholar
4. Shen, Y., Y. H. Lin, and C. W. Nan, "High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer," Adv. Mat., Vol. 19, 1418-1422, 2007.
doi:10.1002/adma.200602097 Google Scholar
5. Hu, T., J. Juuti, and H. Jantunen, "RF-properties of BST-PPS composites," J. Eur. Ceram. Soc., Vol. 27, 2923-2926, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.027 Google Scholar
6. Xiang, F., H. Wang, and X. Yao, "Dielectric properties of SrTiO3/POE flexible composites for microwave applications," J. Eur. Ceram. Soc., Vol. 27, 3093-3097, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.034 Google Scholar
7. Xiang, F., H. Wang, M. L. Zhang, and X. Yao, "Frequency-temperature compensation mechanism for bismuth based dielectric/PTFE microwave composites," J. Electroceram., Vol. 22, 221-226, 2009.
doi:10.1007/s10832-007-9368-z Google Scholar
8. Xiang, F., H.Wang, and X. Yao, "Preparation and dielectric properties of bismuth-based dielectric/PTFE microwave composite," J. Eur. Ceram. Soc., Vol. 26, 1999-2002, 2006.
doi:10.1016/j.jeurceramsoc.2005.09.048 Google Scholar
9. Subodh, G., C. Paviathran, P. Mohanan, and M. T. Sebastian, "PTFE/Sr22Ce2Ti5O16 polymer ceramic composites for electronic packaging applications," J. Eur. Ceram. Soc., Vol. 27, 3039-3044, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.049 Google Scholar
10. Tuncer, E., E. Nettelblad, and S. M. Guba·nski, "Non-Debye dielectric relaxation in binary dielectric mixtures (50--50): Randomness and regularity in mixture topology," J. Appl. Phys., Vol. 92, 4612-4624, 2002.
doi:10.1063/1.1505975 Google Scholar
11. Perrier, G. and A. Bergeret, "Maxwell-Wagner-Sillars relaxations in polystyrene-glass-bead composites," J. Appl. Phys., Vol. 77, 2651-2658, 1995.
doi:10.1063/1.358731 Google Scholar
12. Lin, Y. Q., Y. J. Wu, X. M. Chen, S. P. Gu, J. Tong, and S. Guan, "Dielectric relaxation mechanisms of BiMn2O5 ceramics," J. Appl. Phys., Vol. 105, 1-5, 2009. Google Scholar
13. Pecharroman, C., F. Esteban-Betegon, J. F. Bartolome, S. Lopes-Esteban, and J. S. Moya, "New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant," Adv. Mat., Vol. 13, 1541-1544, 2001.
doi:10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X Google Scholar
14. Rujijanagul, G., S. Jompruan, and A. Chaipanich, "Influence of graphite particle size on electrical properties of modified PZT-polymer composites," Curr. Appl. Phys., Vol. 8, 359-362, 2008.
doi:10.1016/j.cap.2007.10.031 Google Scholar
15. George, S., N. I. Santha, and M. T. Sebastian, "Percolation phenomenon in barium samarium titanate-silver composite," J. Phys. Chem. Solids, Vol. 70, 107-111, 2009.
doi:10.1016/j.jpcs.2008.09.015 Google Scholar
16. Ramajo, L. A., A. A. Cristóbal, P. M. Botta, J. M. Porto López, M. M. Reboredo, and M. S. Castro, "Dielectric and magnetic response of Fe3O4/epoxy composites," Composites: Part A, Vol. 40, 388-393, 2009.
doi:10.1016/j.compositesa.2008.12.017 Google Scholar
17. Adikary, S., H. Chan, C. Choy, B. Sundaravel, and I. Wilson, "Characterisation of proton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic-polymer composite," Comp. Science Tech., Vol. 62, 2161-2167, 2002.
doi:10.1016/S0266-3538(02)00149-5 Google Scholar
18. Wu, C. C., Y. C. Chen, C. C. Su, and C.-F. Yang, "The chemical and dielectric properties of epoxy/(Ba0.8Sr0.2)(Ti0.9Zr0.1)Osub>3/sub>," Eur. Polymer., Vol. 45, 1442-1447, 2009.
doi:10.1016/j.eurpolymj.2009.02.005 Google Scholar
19. Jylha, L. and A. Sihvola, "Equation for the effective permittivity of particle-filled composites for material design application," J. Phys. D App. Phys., Vol. 40, 2007.
doi:10.1088/0022-3727/40/16/032 Google Scholar
20. Sa-Gong, G., A. Safari, S. J. Jang, and R. E. Newnham, "Poling flexible piezoelectric composites," Ferroelectrics Lett., Vol. 5, 131-142, 1986.
doi:10.1080/07315178608202472 Google Scholar
21. Ryvkina, N., I. Tchmutin, J. Vilcakova, M. Pelíšková, and P. Sáha, "The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: Theoretical modeling and experimental results," Synth. Mat., Vol. 148, 141-146, 2005.
doi:10.1016/j.synthmet.2004.09.028 Google Scholar
22. Li, C., E. T. Thostenson, T. W. Chou, C. Li, and E. Thostenson, "Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites," Appl. Phys. Lett., Vol. 91, 1227-1249, 2007. Google Scholar
23. Todd, M. G. and F. G. Shi, "Characterizing the interphase dielectric constant of polymer composite materials: Effect of chemical coupling agents," J. Appl. Phys., Vol. 94, No. 7, 4551-4557, 2003.
doi:10.1063/1.1604961 Google Scholar
24. Murugaraj, P., D. Mainwaring, and N. Mora-Huertas, "Dielectric enhancement in polymer-nanoparticle composites through inter-phase polarizability," J. Appl. Phys., Vol. 98, 054304, 2005.
doi:10.1063/1.2034654 Google Scholar
25. Vaia, R. and H. Wagner, "Framework for nanocomposites," Materials Today, Vol. 7, No. 11, 32-37, 2004.
doi:10.1016/S1369-7021(04)00506-1 Google Scholar