Vol. 115
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-31
Electrothermal Effects in High Density through Silicon via (Tsv) Arrays
By
Progress In Electromagnetics Research, Vol. 115, 223-242, 2011
Abstract
Electrothermal effects in various through silicon via (TSV) arrays are investigated in this paper. An equivalent lumped-element circuit model of a TSV pair is derived. The temperature-dependent TSV capacitance, silicon substrate capacitance and conductance are examined for low-, medium-, and high-resistivity silicon substrates, respectively. The partial-element equivalent-circuit (PEEC) method is employed for calculating per-unit-length (p.u.l.) resistance, inductance, insertion loss and characteristic impedances of copper and polycrystalline silicon (poly-Si) TSV arrays, and their frequency- and temperature-dependent characteristics are treated rigorously. The modified time-domain finite-element method (TD-FEM), in the presence of a set of periodic differential-mode voltage pulses, is also employed for studying transient electrothermal responses of 4- and 5-TSV arrays made of different materials, with their maximum temperatures and thermal crosstalk characterized thoroughly.
Citation
Wen-Sheng Zhao, Xiao-Peng Wang, and Wen-Yan Yin, "Electrothermal Effects in High Density through Silicon via (Tsv) Arrays," Progress In Electromagnetics Research, Vol. 115, 223-242, 2011.
doi:10.2528/PIER11030503
References

1. Koyanagi, M., T. Fukushima, and T. Tanaka, "High-density through silicon vias for 3-D LSIs," Proc. IEEE, Vol. 97, No. 1, 49-59, Jan. 2009.
doi:10.1109/JPROC.2008.2007463

2. Katti, G., M. Stucchi, K. D. Meyer, and W. Dehaene, "Electrical modeling and characterization of through silicon via for three-dimensional ICs," IEEE Trans. Electron Devices, Vol. 57, No. 1, 256-262, Jan. 2010.
doi:10.1109/TED.2009.2034508

3. Ramaswami, S., J. Dukovic, B. Eaton, et al. "Process integration considerations for 300nm TSV manufacturing," IEEE Trans. Device Mater. Rel., Vol. 9, No. 4, 524-528, Dec. 2009.
doi:10.1109/TDMR.2009.2034317

4. Bandyopadhyay, T., R. Chatterjee, D. Chung, M. Swaminathan, and R. Tummala, "Electrical modeling of through silicon and package vias," IEEE Int. Conf. 3D System Integration, 7-9, San Francisco, Sep. 2009.

5. Xu, C., H. Li, R. Suaya, and K. Banerjee, "Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs," IEEE Trans. Electron Devices, Vol. 57, No. 12, 3405-3417, Dec. 2010.
doi:10.1109/TED.2010.2076382

6. Pak, J. S., J. Cho, J. Kim, J. Lee, H. Lee, K. Park, and J. H. Kim, "Slow wave and dielectric quasi-TEM modes of metal-insulator-semiconductor (MIS) structure through silicon via (TSV) in signal propagation and power delivery in 3D chip package," IEEE Electronic Compon. Tech. Conf., 667-672, Las Vegas, Jun. 2010.

7. Han, K. J., M. Swaminathan, and T. Bandyopadhyay, "Electromagnetic modeling of through-silicon vias (TSV) interconnections using cylindrical modal basis functions," IEEE Trans. Adv. Packag., Vol. 33, No. 4, 804-817, Nov. 2010.
doi:10.1109/TADVP.2010.2050769

8. Katti, G., M. Stucchi, J. V. Olmen, K. D. Meyer, and W. Dehaene, "Through-silicon-via capacitance reduction technique to benefit 3-D IC performance," IEEE Electron Device Lett., Vol. 31, No. 4, 549-551, Jun. 2010.
doi:10.1109/LED.2010.2046712

9. Katti, G., A. Mercha, M. Stucchi, et al. "Temperature dependent electrical characteristics of through-Si-via (TSV) interconnections," 2010 IEEE Int. Interconnect Tech. Conf., 7-9, Jun. 2010.

10. Selvanayagam, C. S., J. H. Lau, X. Zhang, S. Seah, V. Vaidyanathan, and T. C. Chai, "Nonlinear thermal stress/strain analysis of copper filled TSV (through silicon via) and their flip-chip microbumps," IEEE Trans. Adv. Packag., Vol. 32, No. 4, 720-728, Oct. 2009.
doi:10.1109/TADVP.2009.2021661

11. Wang, X. P., W. Y. Yin, and S. He, "Multiphysics characterization of transient electrothermomechanical responses of through-silicon vias applied with a periodic voltage pulse," IEEE Trans. Electron. Devices, Vol. 57, No. 6, 1382-1389, Jun. 2010.
doi:10.1109/TED.2010.2045676

12. Tyagi, M. S., Introduction to Semiconductor Materials and Devices, New York, 1991.

13. Yin, W. Y., K. Kang, and J. F. Mao, "Electromagnetic-thermal characterization of on-chip coupled (a)symmetrical interconnects," IEEE Trans. Adv. Packag., Vol. 30, No. 4, 851-863, Nov. 2007.
doi:10.1109/TADVP.2007.908016

14. Shi, X., K. S. Yeo, W. M. Lim, M. A. Do, and C. C. Boon, "A spice compatible model of on-wafer coupled interconnects for CMOS RFICs," Progress In Electromagnetics Research, Vol. 102, 287-299, 2010.
doi:10.2528/PIER10010608

15. Babic, S. I., F. Sirois, and C. Akyel, "Validity check of mutual inductance formulas for circular filaments with lateral and angular misalignments," Progress In Electromagnetics Research M, Vol. 8, 15-26, 2009.
doi:10.2528/PIERM09060105

16. Carretero, C., R. Alonso, J. Acero, and J. M. Burdio, "Coupling impedance between planar coils inside a layered media," Progress In Electromagnetics Research, Vol. 112, 381-396, 2011.

17. Xie, H., J. Wang, R. Fan, and Y. Liu, "Study of loss effect of transmission lines and validity of a spice model in electromagnetic topology," Progress In Electromagnetics Research, Vol. 90, 89-103, 2009.
doi:10.2528/PIER08121605

18. Kang, Y., H. Kim, J. Lee, Y. Son, B. G. Park, J. D. Lee, and H. Shin, "Modeling of polysilicon depletion effect in recessed-channel MOSFETs," IEEE Electron Device Lett., Vol. 30, No. 2, 1371-1373, Feb. 2009.
doi:10.1109/LED.2009.2034278

19. Yang, K., W. Y. Yin, J. Shi, K. Kang, J. F. Mao, and Y. P. Zhang, "A study of on-chip spiral inductors," IEEE Trans. Electron. Devices, Vol. 55, No. 11, 3236-3245, Nov. 2008.
doi:10.1109/TED.2008.2004648

20. Mustafa, F. and A. M. Hashim, "Properties of electromagnetic fields and effective permittivity excited by drifting plasma waves in semiconductor-insulator interface structure and equivalent transmission line technique for multi-layered structure," Progress In Electromagnetics Research, Vol. 104, 403-425, 2010.
doi:10.2528/PIER10041504

21. Eudes, T., B. Ravelo, and A. Louis, "Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011.

22. Khalaj-Amirhosseini, M., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502

23. Kaiser, K. L., Electromagnetic Compatibility Handbook, CRC Press, 2005.

24. Bedrosian, G., "High-performance computing for finite element methods in low-frequency electromagnetics," Progress In Electromagnetics Research, Vol. 7, 57-110, 1993.

25. Hellicar, A. D., J. S. Kot, G. C. James, and G. K. Cambrell, "The analysis of 3D model characterization and its impact on the accuracy of scattering calculations," Progress In Electromagnetics Research, Vol. 110, 125-145, 2010.
doi:10.2528/PIER10092703