1. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, 2001.
doi:10.1109/20.951324 Google Scholar
2. Atallah, K., S. Calverley, and D. Howe, "Design, analysis and realization of a high-performance magnetic gear," IEE Proc. Electric Power Appl., Vol. 151, No. 2, 135-143, 2004.
doi:10.1049/ip-epa:20040224 Google Scholar
3. Rasmussen, P., T. Andersen, F. Jorgensen, and O. Nielsen, "Development of a high-performance magnetic gear," IEEE Trans. Ind. Appl., Vol. 41, No. 3, 764-770, 2005.
doi:10.1109/TIA.2005.847319 Google Scholar
4. Jian, L., K. T. Chau, Y. Gong, J. Jiang, C. Yu, and W. Li, "Comparison of coaxial magnetic gears with different topologies," IEEE Trans. Magn., Vol. 45, No. 10, 4526-4529, 2009.
doi:10.1109/TMAG.2009.2021662 Google Scholar
5. Jian, L. and K. T. Chau, "A coaxial magnetic gear with halbach permanent-magnet arrays," IEEE Trans. Energy Conversion, Vol. 25, No. 2, 319-328, 2010.
doi:10.1109/TEC.2010.2046997 Google Scholar
6. Liu, X., K. T. Chau, J. Jiang, and C. Yu, "Design and analysis of interior-magnet outer-rotor concentric magnetic gears," Journal of Applied Physics, Vol. 105, No. 7, 1-3, 2009. Google Scholar
7. Jian, L. and K.-T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Eletromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301 Google Scholar
8. Lubin, T., S. Mezani, and A. Rezzoug, "Analytical computation of the magnetic field distribution in a magnetic gear," IEEE Trans. Magn., Vol. 46, No. 7, 2611-2621, 2010.
doi:10.1109/TMAG.2010.2044187 Google Scholar
9. Jian, L., K. T. Chau, and J. Jiang, "A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation," IEEE Trans. Ind. Appl., Vol. 45, No. 3, 954-962, 2009.
doi:10.1109/TIA.2009.2018974 Google Scholar
10. Jian, L., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magneticgear-integrated wind power generator using time-stepping finite element method," Progress In Eletromagnetics Research, Vol. 113, 351-367, 2011. Google Scholar
11. Jian, L. and K.-T. Chau, "Design and analysis of a magneticgeared electronic-continuously variable transmission system using finite element method ," Progress In Eletromagnetics Research, Vol. 107, 47-61, 2010.
doi:10.2528/PIER10062806 Google Scholar
12. Frank, N. and H. Toliyat, "Gearing ratios of a magnetic gear for marine applications," IEEE Electric Ship Technologies Symposium, ESTS 2009, 477-481, 2009.
doi:10.1109/ESTS.2009.4906554 Google Scholar
13. Hong, D., B. Woo, D. Koo, and D. Kang, "Optimum design of transverse °ux linear motor for weight reduction and improvement thrust force using response surface methodology," IEEE Trans. Magn., Vol. 44, No. 11, 4317-4320, 2008.
doi:10.1109/TMAG.2008.2002474 Google Scholar
14. Choi, Y., H. Kim, and J. Lee, "Optimum design criteria or maximum torque density and minimum torque ripple of SynRM according to the rated wattage using response surface methodology," IEEE Trans. Magn., Vol. 44, No. 11, 4135-4138, 2008.
doi:10.1109/TMAG.2008.2002518 Google Scholar
15. Hasanien, H., A. Abd-Rabou, and S. Sakr, "Design optimization of transverse flux linear motor for weight reduction and performance improvement using response surface methodology and genetic algorithms," IEEE Trans. Energy Conversion, Vol. 25, No. 3, 598-605, 2010.
doi:10.1109/TEC.2010.2050591 Google Scholar
16. Jian, L., K. T. Chau, W. Li, and J. Li, "A novel coaxial magnetic gear using bulk HTS for industrial applications," IEEE Trans. Appl. Superconduc., Vol. 20, No. 3, 981-984, 2010.
doi:10.1109/TASC.2010.2040609 Google Scholar
17. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Eletromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201 Google Scholar
18. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Eletromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004 Google Scholar
19. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping fite element analysis of broken bars fault in a three-phase squirrel-cage induction motor," Progress In Eletromagnetics Research, Vol. 68, 53-70, 2007.
doi:10.2528/PIER06080903 Google Scholar
20. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network ," Progress In Eletromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303 Google Scholar
21. Lecointe, J.-P., B. Cassoret, and J. F. Brudny, "Distinction of toothing and saturation effects on magnetic noise of induction motors," Progress In Eletromagnetics Research, Vol. 112, 125-137, 2011. Google Scholar
22. Li, J., Z. Liu, M. Jabbar, and X. Gao, "Design optimization for cogging torque minimization using response surface methodology," IEEE Trans. Magn., Vol. 40, No. 2, 1176-1179, 2004.
doi:10.1109/TMAG.2004.824809 Google Scholar
23. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring sierpinski carpet arrays optimized by genetic algorithms," Progress In Eletromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110 Google Scholar
24. Reza, A. W., M. S. Sarker, and K. Dimyati, "A novel integrated mathematical approach of ray-tracing and genetic algorithm for optimizing indoor wireless coverage," Progress In Eletromagnetics Research, Vol. 110, 147-162, 2010.
doi:10.2528/PIER10091701 Google Scholar
25. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-effincy wide-band multimodal square horns for discrete lenses," Progress In Eletromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806 Google Scholar