Vol. 117
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-25
A Late-Time Analysis Procedure for Extracting Weak Resonances. Application to the Schumann Resonances Obtained with the TLM Method
By
Progress In Electromagnetics Research, Vol. 117, 1-18, 2011
Abstract
The sequence of Schumann resonances is unique for each celestial body with an ionosphere, since these resonances are determined by the dimensions of the planet/satellite and the corresponding atmospheric conductivity profile. Detecting these frequencies in an atmosphere is a clear proof of electrical activity, since it implies the existence of an electromagnetic energy source, which is essential for their creation and maintenance. In this paper, an analysis procedure for extracting weak resonances from the responses of electromagnetic systems excited by electric discharges is shown. The procedure, based on analysis of the late-time system response, is first checked using an analytical function and later applied to the vertical electric field generated by the computational simulation of Earth's atmosphere using the TLM (Transmission Line Matrix) method in order to extract the weak Schumann resonances contained in this electric field component.
Citation
Juan Antonio Morente Enrique A. Navarro Jorge Andres Porti Alfonso Salinas Juan A. Morente-Molinera Sergio Toledo-Redondo Williams J. O'Connor Bruno P. Besser Herbert I. M. Lichtenegger Jesús F. Fornieles Antonio Méndez , "A Late-Time Analysis Procedure for Extracting Weak Resonances. Application to the Schumann Resonances Obtained with the TLM Method," Progress In Electromagnetics Research, Vol. 117, 1-18, 2011.
doi:10.2528/PIER11040405
http://www.jpier.org/PIER/pier.php?paper=11040405
References

1. Tinsley, B. A. and L. Zhou, "Initial results of a global circuit model with variable stratospheric and tropospheric aerosols," J. Geophys. Res., Vol. 111, No. D16205, 1-23, 2006.

2. Makino, M. and T. Ogawa, "Quantitative estimation of global circuit," J. Geophys. Res., Vol. 90, No. D4, 5961-5966, 1985.
doi:10.1029/JD090iD04p05961

3. Sentman, D. D., "Schumann resonances," Handbook of Atmo-spheric Electrodynamics, Vol. 1, 267-295, 1995.

4. Morente, J. A., J. A. PortÍ, A. Salinas, G. J. Molina-Cuberos, H. Lichtenegger, B. P. Besser, and K. Schwingenschuh, "Do Schumann resonance frequencies depend on altitude?," J. Geophys. Res., Vol. 109, No. 05306, 1-6, 2004.

5. Christian, H. J., et al., "Global frequency and distribution of lightning as observed from space by the optical transient detector," J. Geophys. Res., Vol. 108, No. 1, 1-15, 2003.
doi:10.1029/2002JD002347

6. Barr, R., D. L. Jones, and C. J. Rodger, "ELF and VLF radio waves," J. Atmos. Sol. Terr. Phys., Vol. 62, No. 17--18, 1689-1718, 2000.
doi:10.1016/S1364-6826(00)00121-8

7. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., Hoboken, N.J., 1989.

8. Poeverlein, H., "Resonance of the space between Earth and ionosphere," J. Res. NBS (Radio Prop.), Vol. 65, No. 5, 465-473, 1961.

9. Bliokh, P. V., Y. P. Galyuk, E. M. HÄunninen, A. P. Nikolaenko, and L. M. Rabinovich, "Resonance effects in the Earth-ionosphere cavity," Radiophys. Quant. Electron., Vol. 20, No. 4, 339-345, 1977.
doi:10.1007/BF01033918

10. Nikolaenko, A. P. and L. M. Rabinovich, "Possible global electromagnetic resonances on the planets of the solar system," Cosmic Res., Vol. 20, No. 1, 67-71, 1982.

11. Sentman, D. D., "Schumann resonance spectra in a two-scale-height Earth-ionosphere cavity," J. Geophys. Res., Vol. 101, No. 5, 9479-9487, 1996.
doi:10.1029/95JD03301

12. Morente, J. A., J. A. Portí, B. P. Besser, A. Salinas, H. I. M. Lichtenegger, E. A. Navarro, and G. J. Molina-Cuberos, "A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the transmission line matrix method," J. Geophys. Res., Vol. 111, No. 10305, 1-13, 2006.

13. Schumann, W. O., "Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist," Z. Naturforsch. A, Vol. 7, 149-154, 1952.

14. Besser, B. P., "Synopsis of the historical development of Schumann resonances," Radio Sci., Vol. 42, No. RS2S02, 1-20, 2007.

15. Wait, J. R., Geo-electromagnetism, Academic Press, London, 1982.

16. Budden, K. G., The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere, Cambridge Univ. Press, New York, 1985.
doi:10.1017/CBO9780511564321.002

17. Nickolaenko, A. P. and M. Hayakawa, Resonances in the Earthionosphere Cavity, Springer, New York, 2002.

18. Balser, M. and C. A. Wagner, "Observations of Earth-ionosphere cavity resonances," Nature, Vol. 188, No. 4751, 638-641, 1960.
doi:10.1038/188638a0

19. Williams, E. R., "The Schumann resonance: A global tropical thermometer," Science, Vol. 256, No. 5060, 1184-1187, 1992.
doi:10.1126/science.256.5060.1184

20. Sentman, D. D., "Approximate Schumann resonance parameters for a two-scale-height ionosphere," J. Atmos. Sol. Terr. Phys., Vol. 22, No. 1, 35-46, 1990.

21. Rycroft, M. J., A. Odzimek, N. F. Arnold, M. FÄullekrug, A. Kulak, and T. Neuber, "New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites," J. Atmos. Sol. Terr. Phys., Vol. 69, 2485-2509, 2007.
doi:10.1016/j.jastp.2007.09.004

22. Cummer, S. A., "Modeling electromagnetic propagation in the Earth-ionosphere waveguide," IEEE Trans. Antennas and Propag., Vol. 48, No. 9, 1420-1429, 2000.
doi:10.1109/8.898776

23. Hayakawa, M. and T. Otsuyama, "FDTD analysis of ELF wave propagation in inhomogencous subionospheric waveguide models," Appl. Computational Electromagnetics Soc. J., Vol. 17, No. 3, 239-244, 2002.

24. Otsuyama, T., D. Sakuma, and M. Hayakawa, "FTDT analysis of ELF wave propagation and Schumann resonanace for a subionopheric waveguide model," Radio Sci., Vol. 38, No. 6, 1103, 2003.
doi:10.1029/2002RS002752

25. Yang, S., Y. Chen, and Z.-P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

26. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

27. Christopoulos, C., "The Transmission-line Modeling Method: TLM," IEEE/OUP Press, 1995.

28. Schlegel, K. and M. Füllekrug, "Schumann resonance parameter changes during high-energy particle precipitation," J. Geophys. Res., Vol. 104, No. 5, 10111-10118, 1999.
doi:10.1029/1999JA900056

29. Plonus, M. A., Applied Electromagnetics, McGraw-Hill, New York, 1978.

30. De Cogan, D., S. H. Pulko, and W. J. O'Connor, "Transmission Line Matrix in Computational Mechanics," CRC Press, 2005.

31. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 4, 370-377, 1987.
doi:10.1109/TMTT.1987.1133658

32. Morente, J. A., G. J. Molina-Cuberos, J. A. Portí, B. P. Besser, A. Salinas, K. Schwingenschuch, and H. Lichtenegger, "A numerical simulation of Earth's electromagnetic cavity with the transmission line matrix method: Schumann resonances," J. Geophys. Res., Vol. 108, No. 5, 1-11, 2003.
doi:10.1029/2002JA009779

33. Sukhorukov, A. I., "Lightning transient fields in the atmosphere-low ionosphere," J. Atmos. Terr. Phys., Vol. 58, No. 15, 1711-1720, 1996.
doi:10.1016/0021-9169(95)00154-9

34. Ogawa, T., "Lightning currents," Handbook of Atmospheric Electrodynamics, Vol. 1, 93-136, 1995.

35. Gómez, R. and J. A. Morente, "Analysis of electric quadrupole radiation in the time domain: Application to large current radiators," Int. J. Electron., Vol. 58, No. 6, 921-931, 1985.
doi:10.1080/00207218508939087

36. Sentman, D. D., "Magnetic elliptical polarization of Schumann resonances," Radio Science, Vol. 22, No. 4, 595-606, 1987.
doi:10.1029/RS022i004p00595

37. Mushtak, V. C. and E. Williams, "ELF propagation parameters for uniform models of the Earth-ionosphere waveguide," J. Atmos. Sol. Terr. Phys., Vol. 64, No. 18, 1898-2001, 2002.
doi:10.1016/S1364-6826(02)00222-5

. Gharsallah, N., E. J. Rothwell, K. Chen, and D. P. Nyquist, "Identi¯cation of the natural resonance frequencies of a conducting sphere from a measured transient response," IEEE Trans. Antennas and Propag., Vol. 38, No. 1, 141-143, 1990.
doi:10.1109/8.43603