Dpto. de Electromagnetismo y Física de la Materia
Universidad de Granada
Spain
HomepageSchool of Electrical, Electronic and Mechanical Engineering
University College Dublin
Ireland
HomepageSpace Research Institute, Austrian Academy of Sciences
Austria
HomepageDpto. de Electromagnetismo y Física de la Materia
Universidad de Granada
Spain
HomepageDpto. de Electromagnetismo y Física de la Materia
Universidad de Granada
Spain
Homepage1. Tinsley, B. A. and L. Zhou, "Initial results of a global circuit model with variable stratospheric and tropospheric aerosols," J. Geophys. Res., Vol. 111, No. D16205, 1-23, 2006. Google Scholar
2. Makino, M. and T. Ogawa, "Quantitative estimation of global circuit," J. Geophys. Res., Vol. 90, No. D4, 5961-5966, 1985.
doi:10.1029/JD090iD04p05961 Google Scholar
3. Sentman, D. D., "Schumann resonances," Handbook of Atmo-spheric Electrodynamics, Vol. 1, 267-295, 1995. Google Scholar
4. Morente, J. A., J. A. PortÍ, A. Salinas, G. J. Molina-Cuberos, H. Lichtenegger, B. P. Besser, and K. Schwingenschuh, "Do Schumann resonance frequencies depend on altitude?," J. Geophys. Res., Vol. 109, No. 05306, 1-6, 2004. Google Scholar
5. Christian, H. J., et, , al., and , "Global frequency and distribution of lightning as observed from space by the optical transient detector," J. Geophys. Res., Vol. 108, No. 1, 1-15, 2003.
doi:10.1029/2002JD002347 Google Scholar
6. Barr, R., D. L. Jones, and C. J. Rodger, "ELF and VLF radio waves," J. Atmos. Sol. Terr. Phys., Vol. 62, No. 17--18, 1689-1718, 2000.
doi:10.1016/S1364-6826(00)00121-8 Google Scholar
7. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., 1989.
8. Poeverlein, H., "Resonance of the space between Earth and ionosphere," J. Res. NBS (Radio Prop.), Vol. 65, No. 5, 465-473, 1961. Google Scholar
9. Bliokh, P. V., Y. P. Galyuk, E. M. HÄunninen, A. P. Nikolaenko, and L. M. Rabinovich, "Resonance effects in the Earth-ionosphere cavity," Radiophys. Quant. Electron., Vol. 20, No. 4, 339-345, 1977.
doi:10.1007/BF01033918 Google Scholar
10. Nikolaenko, A. P. and L. M. Rabinovich, "Possible global electromagnetic resonances on the planets of the solar system," Cosmic Res., Vol. 20, No. 1, 67-71, 1982. Google Scholar
11. Sentman, D. D., "Schumann resonance spectra in a two-scale-height Earth-ionosphere cavity," J. Geophys. Res., Vol. 101, No. 5, 9479-9487, 1996.
doi:10.1029/95JD03301 Google Scholar
12. Morente, J. A., J. A. Portí, B. P. Besser, A. Salinas, H. I. M. Lichtenegger, E. A. Navarro, and G. J. Molina-Cuberos, "A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the transmission line matrix method," J. Geophys. Res., Vol. 111, No. 10305, 1-13, 2006. Google Scholar
13. Schumann, W. O., "Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist," Z. Naturforsch. A, Vol. 7, 149-154, 1952. Google Scholar
14. Besser, B. P., "Synopsis of the historical development of Schumann resonances," Radio Sci., Vol. 42, No. RS2S02, 1-20, 2007. Google Scholar
15. Wait, J. R., Geo-electromagnetism, Academic Press, 1982.
16. Budden, K. G., The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere, Cambridge Univ. Press, 1985.
doi:10.1017/CBO9780511564321.002
17. Nickolaenko, A. P. and M. Hayakawa, Resonances in the Earthionosphere Cavity, Springer, 2002.
18. Balser, M. and C. A. Wagner, "Observations of Earth-ionosphere cavity resonances," Nature, Vol. 188, No. 4751, 638-641, 1960.
doi:10.1038/188638a0 Google Scholar
19. Williams, E. R., "The Schumann resonance: A global tropical thermometer," Science, Vol. 256, No. 5060, 1184-1187, 1992.
doi:10.1126/science.256.5060.1184 Google Scholar
20. Sentman, D. D., "Approximate Schumann resonance parameters for a two-scale-height ionosphere," J. Atmos. Sol. Terr. Phys., Vol. 22, No. 1, 35-46, 1990. Google Scholar
21. Rycroft, M. J., A. Odzimek, N. F. Arnold, M. FÄullekrug, A. Kulak, and T. Neuber, "New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites," J. Atmos. Sol. Terr. Phys., Vol. 69, 2485-2509, 2007.
doi:10.1016/j.jastp.2007.09.004 Google Scholar
22. Cummer, S. A., "Modeling electromagnetic propagation in the Earth-ionosphere waveguide," IEEE Trans. Antennas and Propag., Vol. 48, No. 9, 1420-1429, 2000.
doi:10.1109/8.898776 Google Scholar
23. Hayakawa, M. and T. Otsuyama, "FDTD analysis of ELF wave propagation in inhomogencous subionospheric waveguide models," Appl. Computational Electromagnetics Soc. J., Vol. 17, No. 3, 239-244, 2002. Google Scholar
24. Otsuyama, T., D. Sakuma, and M. Hayakawa, "FTDT analysis of ELF wave propagation and Schumann resonanace for a subionopheric waveguide model," Radio Sci., Vol. 38, No. 6, 1103, 2003.
doi:10.1029/2002RS002752 Google Scholar
25. Yang, S., Y. Chen, and Z.-P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507 Google Scholar
26. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603 Google Scholar
27. Christopoulos, C., "The Transmission-line Modeling Method: TLM," IEEE/OUP Press, 1995. Google Scholar
28. Schlegel, K. and M. Füllekrug, "Schumann resonance parameter changes during high-energy particle precipitation," J. Geophys. Res., Vol. 104, No. 5, 10111-10118, 1999.
doi:10.1029/1999JA900056 Google Scholar
29. Plonus, M. A., Applied Electromagnetics, McGraw-Hill, 1978.
30. De Cogan, D., S. H. Pulko, and W. J. O'Connor, "Transmission Line Matrix in Computational Mechanics," CRC Press, 2005. Google Scholar
31. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 4, 370-377, 1987.
doi:10.1109/TMTT.1987.1133658 Google Scholar
32. Morente, J. A., G. J. Molina-Cuberos, J. A. Portí, B. P. Besser, A. Salinas, K. Schwingenschuch, and H. Lichtenegger, "A numerical simulation of Earth's electromagnetic cavity with the transmission line matrix method: Schumann resonances," J. Geophys. Res., Vol. 108, No. 5, 1-11, 2003.
doi:10.1029/2002JA009779 Google Scholar
33. Sukhorukov, A. I., "Lightning transient fields in the atmosphere-low ionosphere," J. Atmos. Terr. Phys., Vol. 58, No. 15, 1711-1720, 1996.
doi:10.1016/0021-9169(95)00154-9 Google Scholar
34. Ogawa, T., "Lightning currents," Handbook of Atmospheric Electrodynamics, Vol. 1, 93-136, 1995. Google Scholar
35. Gómez, R. and J. A. Morente, "Analysis of electric quadrupole radiation in the time domain: Application to large current radiators," Int. J. Electron., Vol. 58, No. 6, 921-931, 1985.
doi:10.1080/00207218508939087 Google Scholar
36. Sentman, D. D., "Magnetic elliptical polarization of Schumann resonances," Radio Science, Vol. 22, No. 4, 595-606, 1987.
doi:10.1029/RS022i004p00595 Google Scholar
37. Mushtak, V. C. and E. Williams, "ELF propagation parameters for uniform models of the Earth-ionosphere waveguide," J. Atmos. Sol. Terr. Phys., Vol. 64, No. 18, 1898-2001, 2002.
doi:10.1016/S1364-6826(02)00222-5 Google Scholar
. Gharsallah, N., E. J. Rothwell, K. Chen, and D. P. Nyquist, "Identi¯cation of the natural resonance frequencies of a conducting sphere from a measured transient response," IEEE Trans. Antennas and Propag., Vol. 38, No. 1, 141-143, 1990.
doi:10.1109/8.43603 Google Scholar