1. Zhu, C., J. K. O. Sin, and H. S. Hwok, "Characteristics of p- and n-channel poly-Si/Si1-xGex/Si sandwiched conductivity modulated thin-film transistors," IEEE Trans. Electron Devic, Vol. 47, No. 11, 2188-2193, 2000.
doi:10.1109/16.877182 Google Scholar
2. Schubert, E. F., A. Fischer, and K. Ploog, "The delta-doped field-effect transistor (δ-FET)," IEEE Trans. Electron Devices, Vol. 33, 625-632, 1986.
doi:10.1109/T-ED.1986.22543 Google Scholar
3. Chakhnakia, Z. D., L. V. Khvedelidze, N. P. Khuchua, R. G. Melkadze, G. Peradze, and T. B. Sakharova, "AlGaAs-GaAs heterostructure δ-doped field-effect transistor (δ-FET)," Proc. SPIE., Vol. 5401, 354-361, 2004.
doi:10.1117/12.558432 Google Scholar
4. Lin, Y. M., S. L. Wu, S. J. Chang, S. Koh, and Y. Shiraki, "SiGe heterostructure field-effect transistor using V-shaped confining potential well," IEEE Electron Device Lett., Vol. 24, No. 2, 69-71, 2003.
doi:10.1109/LED.2002.807709 Google Scholar
5. Aleksov, A., A. Denisenko, M. Kunze, A. Vescan, A. Bergmaier, G. Dollinger, W. Ebert, and E. Kohn, "Diamond diodes and transistors," Semicond. Sci. Technol., Vol. 18, 59-66, 2003.
doi:10.1088/0268-1242/18/3/308 Google Scholar
6. Abid, Z., A. Gopinath, B. Meskoob, and S. Prasad, "GaAs MESFETs with channel-doping variations," Solid-State Electron., Vol. 34, No. 12, 1427-1432, 1991.
doi:10.1016/0038-1101(91)90040-6 Google Scholar
7. Ueda, K., M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, and S. E. Coe, "Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz," IEEE Electron Device Lett., Vol. 27, No. 7, 2006.
doi:10.1109/LED.2006.876325 Google Scholar
8. Wort, C. J. H. and R. S. Balmer, "Diamond as an electronic material," Mater. Today, Vol. 11, No. 1-2, 22-28, 2008.
doi:10.1016/S1369-7021(07)70349-8 Google Scholar
9. Balmer, R. S., I. Friel, S. M. Woollard, C. J. H. Wort, G. A. Scarsbrook, S. E. Coe, H. El-Hajj, A. Kaiser, A. Denisenko, E. Kohn, and J. Isber, "Unlocking diamonds potential as an electronic material," Phil. Trans. R. Soc. A, Vol. 366, 251-265, 2008.
doi:10.1098/rsta.2007.2153 Google Scholar
10. El-Hajj, H., A. Denisenko, A. Kaiser, R. S. Balmer, and E. Kohn, "Diamond MISFET based on boron delta-doped channel," Diamond Relat. Mater., Vol. 17, 1259-1263, 2008.
doi:10.1016/j.diamond.2008.02.015 Google Scholar
11. Nakajima, S., N. Kuwata, N. Shiga, K. Otobe, K. Matsuzaki, T. Sekiguchi, and H. Hayashi, "Characterization of double pulse-doped channel GaAs MESFETs," IEEE Trans. Electron Devices, Vol. 14, No. 3, 146-148, 1993.
doi:10.1109/55.215139 Google Scholar
12. Balmer, R. S., J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, "Chemical vapour deposition synthetic diamond: materials, technology and applications," J. Phys.: Condens. Matter., Vol. 21, No. 36, 364221, 2009.
doi:10.1088/0953-8984/21/36/364221 Google Scholar
13. Yamaguchi, K., Y. Shiraki, Y. Katayama, and Y. Murayamn, "A new short channel MOSFET with an atomic-layer-doped impurity-profile (ALD-MOSFET)," Jpn. J. Appl. Phys., Vol. 22, 267-270, Supplement 22-1, 1983. Google Scholar
14. Lien, C., Y. Huang, H. Chien, and W. Wang, "Charge control model of the double delta-doped quantum-well field-effect transistor," IEEE Trans. Electron Devices, Vol. 41, No. 8, 1351-1356, 1994.
doi:10.1109/16.297729 Google Scholar
15. Miyao, M., K. Nakagawa, H. Nakahara, Y. Kiyota, and M. Kondo, "Recent progress of heterostructure technologies for novel silicon devices," Appl. Surf. Sci., Vol. 102, No. 2, 360-371, 1996.
doi:10.1016/0169-4332(96)00079-7 Google Scholar
16. Martínez-Orozco, J. C., I. Rodríguez-Vargas, C. A. Duque, M. E. Mora-Ramos, and L. M. Gaggero-Sager, "Study of the electronic properties of GaAs-based atomic layer doped field effect transistor (ALD-FET) under the influence of hydrostatic pressure," Phys. Status Solidi B, Vol. 246, No. 3, 581-585, 2009.
doi:10.1002/pssb.200880530 Google Scholar
17. Aleksov, A., M. Kubovic, N. Kaeb, U. Spitzberg, A. Bergmaier, G. Dollinger, T. Bauer, M. Schreck, B. Stritzker, and E. Kohn, "Diamond field effect transistors concepts and challenges," Diamond Relat. Mater., Vol. 12, No. 3-7, 391-398, 2003.
doi:10.1016/S0925-9635(02)00401-6 Google Scholar
18. Zeindl, H. P., B. Bullemer, I. Eisele, and G. Tempel, "Delta-doped MESFET with MBE-grown Si," J. Electrochem. Soc., Vol. 136, No. 4, 1129-1131, 1989.
doi:10.1149/1.2096798 Google Scholar
19. Nakagawa, K., A. A. van Gorkum, and Y. Shiraki, "Atomic layer doped field effect transistor fabricated using Si molecular beam epitaxy," Appl. Phys. Lett., Vol. 54, No. 19, 1869-1871, 1989.
doi:10.1063/1.101263 Google Scholar
20. Oubram, O., L. M. Gaggero-Sager, and D. S. Díaz-Guerrero, "Relative mobility and relative conductivity in ALD-FET (Atomic layer doped-field effect transistor) in GaAs," PIERS Proceeding, 1186-1190, Beijing, China, Mar. 23-27, 2009. Google Scholar
21. Mora-Ramos, M. E. and L. M. Gaggero-Sager, "A simple model for atomic layer doped field-errect transistor (ALD-FET) electronic states," Rev. Mex. Fís., Vol. 44, No. 3, 165-167, 1998. Google Scholar
22. Oubram, O. and L. M. Gaggero-Sager, "Transport properties of delta-doped field effect transistor," Progress In Electromagnetics Research Letters, Vol. 2, 81-87, 2008.
doi:10.2528/PIERL07122810 Google Scholar
23. Gaggero-Sager, L. M. and R. Perez-Alvarez, "A simple model for delta doped field effect transistor electronic states," J. Appl. Phys., Vol. 78, No. 7, 4566-4569, 1995.
doi:10.1063/1.359800 Google Scholar
24. Oubram, O., L. M. Gaggero-Sager, A. Bassam, and G. A. Luna Acosta, "Transport and electronic properties of two dimensional electron gas in delta-migfet in GaAs," Progress In Electromagnetics Research, Vol. 110, 59-80, 2010.
doi:10.2528/PIER10081306 Google Scholar
25. Ozturk, E., "Effect of magnetic field on a p-Type δ-doped GaAs layer," Chinese Phys. Lett., Vol. 27-2010.
doi:10.1088/0256-307X/27/7/077302 Google Scholar
26. Ozturk, E., "Optical intersubband transitions in double Si δ-doped GaAs under an applied magnetic field," Superlattices Microstruct., Vol. 46, No. 5, 752-759, 2009.
doi:10.1016/j.spmi.2009.07.013 Google Scholar
27. Ozturk, E., M. K. Bahar, and I. Sokmen, "Subband structure of p-type δ-doped GaAs as dependent on the acceptor concentration and the layer thickness," Eur. Phys. J. Appl. Phys., Vol. 41, 195-200, 2008.
doi:10.1051/epjap:2008018 Google Scholar
28. El-Hajj, H., A. Denisenko, A. Bergmaier, G. Dollinger, M. Kubovic, and E. Kohn, "Characteristics of boron δ-doped diamond for electronic applications," Diamond Relat. Mater., Vol. 17, 409-414, 2008.
doi:10.1016/j.diamond.2007.12.030 Google Scholar
29. Chen, X. and B. Nabet, "A closed-form expression to analyze electronic properties in delta-doped heterostructures," Solid-State Electron., Vol. 48, 2321-2327, 2004.
doi:10.1016/j.sse.2004.04.011 Google Scholar
30. Rhoderick, E. H. and R. H. Williams, Metal-semiconductor Contacts, Clarendon Press, 1988.
31. Ioriatti, L., "Thomas-Fermi theory of δ-doped semiconductor structures: Exact analytical results in the high-density limit," Phys. Rev. B, Vol. 41, 8340-8344, 1990.
doi:10.1103/PhysRevB.41.8340 Google Scholar
32. Gaggero-Sager, L. M., R. Mora-Ramos, and D. A. Contreras-Solorio, "Thomas-Fermi approximation in p-type δ-doped quantum wells of GaAs and Si," Phys. Rev. B, Vol. 57, No. 11, 6286-6289, 1998.
doi:10.1103/PhysRevB.57.6286 Google Scholar
33. Rodríguez-Vargas, I., L. M. Gaggero-Sager, and V. R. Velasco, "Thomas-Fermi-Dirac theory of the hole gas of a double p-type δ-doped GaAs quantum wells," Surf. Sci., Vol. 537, No. 1-3, 75-83, 2003.
doi:10.1016/S0039-6028(03)00546-6 Google Scholar
34. Wu, C. J. and Z. H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706 Google Scholar
35. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105 Google Scholar
36. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303 Google Scholar
37. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004 Google Scholar
38. Wu, C.-J., Y.-N. Rau, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610 Google Scholar
39. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706 Google Scholar
40. Wang, Y. H., "Interband resonant tunneling diode in δ-doped GaAs," Appl. Phys. Lett., Vol. 57, No. 15, 1546-1547, 1990.
doi:10.1063/1.103348 Google Scholar
41. Sardela, Jr., M. R., H. H. Radamson, L. Hultman, and G. V. Hansson, "Growth, characterization and device fabrication of Boron delta-doped structures by Si-molecular beam epitaxy," Jpn. J. Appl., Vol. 33, 2279-2281, 1994. Google Scholar
42. Li, S. M., W. M. Zheng, A. L. Wu, W. Y. Cong, J. Liu, N. N. Chu, and Y. X. Song, "Terahertz electroluminescence from Be δ-doped GaAs/AlAs quantum well," Appl. Phys. Lett., Vol. 97, No. 2, 023507-1-023507-2, 2010.
doi:10.1063/1.3463467 Google Scholar
43. Weng, T. Y., J. H. Tsai, and D. F. Guo, "An optoelectronic switch with multiple operation states," IEEE, Optoelectronic and Microelectronic Materials and Devices, Conference, 90-93, 2006.
doi:10.1109/COMMAD.2006.4429887 Google Scholar
44. Geraldo, J. M., W. N. Rodrigues, G. Medeiros-Ribeiro, and A. G. de Oliveira, "The effect of the planar doping on the electrical transport properties at the Al:n-GaAs (100) interface: Ultrahigh effective doping," J. Appl. Phys., Vol. 73, No. 2, 820-823, 1993.
doi:10.1063/1.353343 Google Scholar