Vol. 118
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-06-22
Transport and Electronic Properties of the GaAs Ald-Fet
By
Progress In Electromagnetics Research, Vol. 118, 37-56, 2011
Abstract
According to the scaling-down theory, the ALD-FET (Atomic Layer Doping-Field Effect Transistor) structure has attracted a lot of attention in view of its uses for developing devices with very short channels and for achieving very-high-speed operation. Therefore, there is a strong need to obtain an accurate understanding of carrier transport (mobility and conductivity) in such devices. In this work, we report the carrier transport based on the electronic structure of devices. Our results include analytical expressions of both mobility and conductivity. Our analytical expressions for the mobility and conductivity allow us to analyze transport in ALD-FET. We report regions where this device operates in digital and analogue mode. These regions are delimited in terms of intrinsic and extrinsic parameters of the system. The width of the Ohmic region as well as the NDR (Negative Differential Resistance) properties of the system are also characterized.
Citation
Outmane Oubram, Luis Manuel Gaggero-Sager, O. Navarro, and M. Ouadou, "Transport and Electronic Properties of the GaAs Ald-Fet," Progress In Electromagnetics Research, Vol. 118, 37-56, 2011.
doi:10.2528/PIER11040810
References

1. Zhu, C., J. K. O. Sin, and H. S. Hwok, "Characteristics of p- and n-channel poly-Si/Si1-xGex/Si sandwiched conductivity modulated thin-film transistors," IEEE Trans. Electron Devic, Vol. 47, No. 11, 2188-2193, 2000.
doi:10.1109/16.877182        Google Scholar

2. Schubert, E. F., A. Fischer, and K. Ploog, "The delta-doped field-effect transistor (δ-FET)," IEEE Trans. Electron Devices, Vol. 33, 625-632, 1986.
doi:10.1109/T-ED.1986.22543        Google Scholar

3. Chakhnakia, Z. D., L. V. Khvedelidze, N. P. Khuchua, R. G. Melkadze, G. Peradze, and T. B. Sakharova, "AlGaAs-GaAs heterostructure δ-doped field-effect transistor (δ-FET)," Proc. SPIE., Vol. 5401, 354-361, 2004.
doi:10.1117/12.558432        Google Scholar

4. Lin, Y. M., S. L. Wu, S. J. Chang, S. Koh, and Y. Shiraki, "SiGe heterostructure field-effect transistor using V-shaped confining potential well," IEEE Electron Device Lett., Vol. 24, No. 2, 69-71, 2003.
doi:10.1109/LED.2002.807709        Google Scholar

5. Aleksov, A., A. Denisenko, M. Kunze, A. Vescan, A. Bergmaier, G. Dollinger, W. Ebert, and E. Kohn, "Diamond diodes and transistors," Semicond. Sci. Technol., Vol. 18, 59-66, 2003.
doi:10.1088/0268-1242/18/3/308        Google Scholar

6. Abid, Z., A. Gopinath, B. Meskoob, and S. Prasad, "GaAs MESFETs with channel-doping variations," Solid-State Electron., Vol. 34, No. 12, 1427-1432, 1991.
doi:10.1016/0038-1101(91)90040-6        Google Scholar

7. Ueda, K., M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, and S. E. Coe, "Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz," IEEE Electron Device Lett., Vol. 27, No. 7, 2006.
doi:10.1109/LED.2006.876325        Google Scholar

8. Wort, C. J. H. and R. S. Balmer, "Diamond as an electronic material," Mater. Today, Vol. 11, No. 1-2, 22-28, 2008.
doi:10.1016/S1369-7021(07)70349-8        Google Scholar

9. Balmer, R. S., I. Friel, S. M. Woollard, C. J. H. Wort, G. A. Scarsbrook, S. E. Coe, H. El-Hajj, A. Kaiser, A. Denisenko, E. Kohn, and J. Isber, "Unlocking diamonds potential as an electronic material," Phil. Trans. R. Soc. A, Vol. 366, 251-265, 2008.
doi:10.1098/rsta.2007.2153        Google Scholar

10. El-Hajj, H., A. Denisenko, A. Kaiser, R. S. Balmer, and E. Kohn, "Diamond MISFET based on boron delta-doped channel," Diamond Relat. Mater., Vol. 17, 1259-1263, 2008.
doi:10.1016/j.diamond.2008.02.015        Google Scholar

11. Nakajima, S., N. Kuwata, N. Shiga, K. Otobe, K. Matsuzaki, T. Sekiguchi, and H. Hayashi, "Characterization of double pulse-doped channel GaAs MESFETs," IEEE Trans. Electron Devices, Vol. 14, No. 3, 146-148, 1993.
doi:10.1109/55.215139        Google Scholar

12. Balmer, R. S., J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, "Chemical vapour deposition synthetic diamond: materials, technology and applications," J. Phys.: Condens. Matter., Vol. 21, No. 36, 364221, 2009.
doi:10.1088/0953-8984/21/36/364221        Google Scholar

13. Yamaguchi, K., Y. Shiraki, Y. Katayama, and Y. Murayamn, "A new short channel MOSFET with an atomic-layer-doped impurity-profile (ALD-MOSFET)," Jpn. J. Appl. Phys., Vol. 22, 267-270, Supplement 22-1, 1983.        Google Scholar

14. Lien, C., Y. Huang, H. Chien, and W. Wang, "Charge control model of the double delta-doped quantum-well field-effect transistor," IEEE Trans. Electron Devices, Vol. 41, No. 8, 1351-1356, 1994.
doi:10.1109/16.297729        Google Scholar

15. Miyao, M., K. Nakagawa, H. Nakahara, Y. Kiyota, and M. Kondo, "Recent progress of heterostructure technologies for novel silicon devices," Appl. Surf. Sci., Vol. 102, No. 2, 360-371, 1996.
doi:10.1016/0169-4332(96)00079-7        Google Scholar

16. Martínez-Orozco, J. C., I. Rodríguez-Vargas, C. A. Duque, M. E. Mora-Ramos, and L. M. Gaggero-Sager, "Study of the electronic properties of GaAs-based atomic layer doped field effect transistor (ALD-FET) under the influence of hydrostatic pressure," Phys. Status Solidi B, Vol. 246, No. 3, 581-585, 2009.
doi:10.1002/pssb.200880530        Google Scholar

17. Aleksov, A., M. Kubovic, N. Kaeb, U. Spitzberg, A. Bergmaier, G. Dollinger, T. Bauer, M. Schreck, B. Stritzker, and E. Kohn, "Diamond field effect transistors concepts and challenges," Diamond Relat. Mater., Vol. 12, No. 3-7, 391-398, 2003.
doi:10.1016/S0925-9635(02)00401-6        Google Scholar

18. Zeindl, H. P., B. Bullemer, I. Eisele, and G. Tempel, "Delta-doped MESFET with MBE-grown Si," J. Electrochem. Soc., Vol. 136, No. 4, 1129-1131, 1989.
doi:10.1149/1.2096798        Google Scholar

19. Nakagawa, K., A. A. van Gorkum, and Y. Shiraki, "Atomic layer doped field effect transistor fabricated using Si molecular beam epitaxy," Appl. Phys. Lett., Vol. 54, No. 19, 1869-1871, 1989.
doi:10.1063/1.101263        Google Scholar

20. Oubram, O., L. M. Gaggero-Sager, and D. S. Díaz-Guerrero, "Relative mobility and relative conductivity in ALD-FET (Atomic layer doped-field effect transistor) in GaAs," PIERS Proceeding, 1186-1190, Beijing, China, Mar. 23-27, 2009.        Google Scholar

21. Mora-Ramos, M. E. and L. M. Gaggero-Sager, "A simple model for atomic layer doped field-errect transistor (ALD-FET) electronic states," Rev. Mex. Fís., Vol. 44, No. 3, 165-167, 1998.        Google Scholar

22. Oubram, O. and L. M. Gaggero-Sager, "Transport properties of delta-doped field effect transistor," Progress In Electromagnetics Research Letters, Vol. 2, 81-87, 2008.
doi:10.2528/PIERL07122810        Google Scholar

23. Gaggero-Sager, L. M. and R. Perez-Alvarez, "A simple model for delta doped field effect transistor electronic states," J. Appl. Phys., Vol. 78, No. 7, 4566-4569, 1995.
doi:10.1063/1.359800        Google Scholar

24. Oubram, O., L. M. Gaggero-Sager, A. Bassam, and G. A. Luna Acosta, "Transport and electronic properties of two dimensional electron gas in delta-migfet in GaAs," Progress In Electromagnetics Research, Vol. 110, 59-80, 2010.
doi:10.2528/PIER10081306        Google Scholar

25. Ozturk, E., "Effect of magnetic field on a p-Type δ-doped GaAs layer," Chinese Phys. Lett., Vol. 27-2010.
doi:10.1088/0256-307X/27/7/077302        Google Scholar

26. Ozturk, E., "Optical intersubband transitions in double Si δ-doped GaAs under an applied magnetic field," Superlattices Microstruct., Vol. 46, No. 5, 752-759, 2009.
doi:10.1016/j.spmi.2009.07.013        Google Scholar

27. Ozturk, E., M. K. Bahar, and I. Sokmen, "Subband structure of p-type δ-doped GaAs as dependent on the acceptor concentration and the layer thickness," Eur. Phys. J. Appl. Phys., Vol. 41, 195-200, 2008.
doi:10.1051/epjap:2008018        Google Scholar

28. El-Hajj, H., A. Denisenko, A. Bergmaier, G. Dollinger, M. Kubovic, and E. Kohn, "Characteristics of boron δ-doped diamond for electronic applications," Diamond Relat. Mater., Vol. 17, 409-414, 2008.
doi:10.1016/j.diamond.2007.12.030        Google Scholar

29. Chen, X. and B. Nabet, "A closed-form expression to analyze electronic properties in delta-doped heterostructures," Solid-State Electron., Vol. 48, 2321-2327, 2004.
doi:10.1016/j.sse.2004.04.011        Google Scholar

30. Rhoderick, E. H. and R. H. Williams, Metal-semiconductor Contacts, Clarendon Press, 1988.

31. Ioriatti, L., "Thomas-Fermi theory of δ-doped semiconductor structures: Exact analytical results in the high-density limit," Phys. Rev. B, Vol. 41, 8340-8344, 1990.
doi:10.1103/PhysRevB.41.8340        Google Scholar

32. Gaggero-Sager, L. M., R. Mora-Ramos, and D. A. Contreras-Solorio, "Thomas-Fermi approximation in p-type δ-doped quantum wells of GaAs and Si," Phys. Rev. B, Vol. 57, No. 11, 6286-6289, 1998.
doi:10.1103/PhysRevB.57.6286        Google Scholar

33. Rodríguez-Vargas, I., L. M. Gaggero-Sager, and V. R. Velasco, "Thomas-Fermi-Dirac theory of the hole gas of a double p-type δ-doped GaAs quantum wells," Surf. Sci., Vol. 537, No. 1-3, 75-83, 2003.
doi:10.1016/S0039-6028(03)00546-6        Google Scholar

34. Wu, C. J. and Z. H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706        Google Scholar

35. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105        Google Scholar

36. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303        Google Scholar

37. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004        Google Scholar

38. Wu, C.-J., Y.-N. Rau, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610        Google Scholar

39. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706        Google Scholar

40. Wang, Y. H., "Interband resonant tunneling diode in δ-doped GaAs," Appl. Phys. Lett., Vol. 57, No. 15, 1546-1547, 1990.
doi:10.1063/1.103348        Google Scholar

41. Sardela, Jr., M. R., H. H. Radamson, L. Hultman, and G. V. Hansson, "Growth, characterization and device fabrication of Boron delta-doped structures by Si-molecular beam epitaxy," Jpn. J. Appl., Vol. 33, 2279-2281, 1994.        Google Scholar

42. Li, S. M., W. M. Zheng, A. L. Wu, W. Y. Cong, J. Liu, N. N. Chu, and Y. X. Song, "Terahertz electroluminescence from Be δ-doped GaAs/AlAs quantum well," Appl. Phys. Lett., Vol. 97, No. 2, 023507-1-023507-2, 2010.
doi:10.1063/1.3463467        Google Scholar

43. Weng, T. Y., J. H. Tsai, and D. F. Guo, "An optoelectronic switch with multiple operation states," IEEE, Optoelectronic and Microelectronic Materials and Devices, Conference, 90-93, 2006.
doi:10.1109/COMMAD.2006.4429887        Google Scholar

44. Geraldo, J. M., W. N. Rodrigues, G. Medeiros-Ribeiro, and A. G. de Oliveira, "The effect of the planar doping on the electrical transport properties at the Al:n-GaAs (100) interface: Ultrahigh effective doping," J. Appl. Phys., Vol. 73, No. 2, 820-823, 1993.
doi:10.1063/1.353343        Google Scholar