Vol. 117
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-25
Iterative Time-Reversal Mirror Method for Imaging the Buried Object Beneath Rough Ground Surface
By
Progress In Electromagnetics Research, Vol. 117, 19-33, 2011
Abstract
An iterative Time-Reversal Mirror (TRM) method is proposed to Detect and Image the buried target beneath ground surface. Unlike the conventional TRM methods which treat the information of the ground as clutters and directly delete them, the iterative TRM imaging method proposed in this paper utilizes the information of rough ground surface as a useful knowledge. The new approach is consisted of two TRM procedures. In the first TRM procedure, it aims to image the rough surface where the propagation environment for electromagnetic wave is free space. The second TRM procedure aims to image the buried target. In this step, the information of the rough surface estimated by the first TRM procedure will be treated as newly updated propagation environment. Then conventional TRM is applied to image the buried target. By applying this iterative TRM method, the information of the rough ground can be well considered in the whole TRM procedure. Numerical simulations prove that this method performs significantly better image contrast comparing with the results obtained by using conventional TRM. 4-5 dB improvement on the imaging SNR has been achieved. Furthermore, the target can be located more accurately.
Citation
Xiaozhang Zhu Zhiqin Zhao Wei Yang Yin Zhang Zai-Ping Nie Qing Huo Liu , "Iterative Time-Reversal Mirror Method for Imaging the Buried Object Beneath Rough Ground Surface," Progress In Electromagnetics Research, Vol. 117, 19-33, 2011.
doi:10.2528/PIER11041304
http://www.jpier.org/PIER/pier.php?paper=11041304
References

1. Pettinelli, E., A. Di Matteo, E. Mattei, L. Crocco, F. Soldovieri, J. D. Redman, and A. P. Annan, "GPR response from buried pipes: Measurement on field site and tomographic reconstructions," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 8, 2639-2645, 2009.
doi:10.1109/TGRS.2009.2018301

2. Borgioli, G., L. Capineri, P. L. Falorni, S. Matucci, and C. G. Windsor, "The detection of buried pipes from time-of-flight radar data," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 8, 2254-2266, 2008.
doi:10.1109/TGRS.2008.917211

3. Daniels, D., "A review of GPR for landmine detection," Sens. Imaging: Int. J., Vol. 7, No. 3, 90-123, 2006.
doi:10.1007/s11220-006-0024-5

4. Das, Y., "Effects of soil electromagnetic properties on metal detectors," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 6, 1444-1453, 2006.
doi:10.1109/TGRS.2006.870401

5. Dogaru, T., L. Collins, and L. Carin, "Optimal time-domain detection of a deterministic target buried under a randomly rough interface ," IEEE Trans. Antennas Propagat., Vol. 49, 313-326, 2001.
doi:10.1109/8.918604

6. Van der Merwe, A. and I. J. Gupta, "A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines ," IEEE Trans. Geosci. Remote Sens., Vol. 38, 2627-2637, 2000.
doi:10.1109/36.885209

7. Runkle, P. R., P. K. Bharadwaj, L. Couchman, and L. Carin, "Hidden markov models for multi-aspects target classification," IEEE Trans. Signal Processing, Vol. 47, 2035-2040, 1999.
doi:10.1109/78.771050

8. Sullivan, A., R. Damarla, N. Geng, Y. Dong, and L. Carin, "Ultrawide-band synthetic aperture radar for detection of unexploded ordnance: Modeling and measurements," IEEE Trans. Antennas Propagat., Vol. 48, 1306-1315, 2000.
doi:10.1109/8.898763

9. Dong, Y., P. R. Runkle, L. Carin, R. Damarla, A. Sullivan, M. A. Ressler, and J. Sichina, "Multi-aspect detection of surface and shallow-buried unexploded ordnance via ultra-wideband synthetic aperture radar ," IEEE Trans. Geosci. Remote Sens., Vol. 39, 1259-1269, 2001.
doi:10.1109/36.927448

10. Cui, G., L. Kong, and J. Yang, "A back-projection algorithm to stepped-frequency synthetic aperture through-the-wall radar imaging," Process of 1st Asian and Pacific Conference on Synthetic Aperture Radar, 123-126, 2007.

11. Bal, G. and L. Ryzhik, "Time reversal and refocusing in random media," SIAM Journal on Applied Mathematics, Vol. 63, 1475-1498, 2003.
doi:10.1137/S0036139902401082

12. Zheng, W., Z. Zhao, and Z.-P. Nie, "Application of TRM in the UWB through wall radar," Progress In Electromagnetics Research, Vol. 87, 279-296, 2008.
doi:10.2528/PIER08101202

13. Zheng, W.-J., Z.-Q. Zhao, Z.-P. Nie, and Q.-H. Liu, "Evaluation of TRM in the complex through wall environment," Progress In Electromagnetics Research, Vol. 90, 235-254, 2009.
doi:10.2528/PIER09011003

14. Fink, M. and Time reversed acoustics, "Physics Today,", Vol. 50, 34-40, 1997.

15. Bellomo, L., S. Pioch, M. Saillard, and E. Spano, "Time reversal experiments in the microwave range: Description of the radar and results," Progress In Electromagnetics Research, Vol. 104, 427-448, 2010.
doi:10.2528/PIER10030102

16. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 15, 687-719.

17. Chen, X., "Time-reversal operator for a small sphere in electromagnetic fields," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1219-1230, 2007.

18. Liu, D., J. Krolik, and L. Carin, "Electromagnetic target detection in uncertain media: Time-reversal and minimum-variance algorithms," IEEE Trans. Geosci. Remote Sens., Vol. 45, 934-944, 2007.
doi:10.1109/TGRS.2006.890411

19. De Rosny, J., G. Lerosey, and M. Fink, "Theory of electromagnetic time-reversal mirrors," IEEE Trans. Antennas Propagat., Vol. 58, 3139-3149, 2010.
doi:10.1109/TAP.2010.2052567

20. Liu, X., B.-Z. Wang, S. Xiao, and J. H. Deng, "Performance of impulse radio UWB communications based on time reversal technique ," Progress In Electromagnetics Research, Vol. 79, 401-413, 2008.
doi:10.2528/PIER07102205

21. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method,", Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408

22. Foroozan, F. and A. Asif, "Time-reversal ground-penetrating radar: Range estimation with cramér-rao lower bounds," IEEE Trans. Geosci. Remote Sens., Vol. 48, 3698-3708, 2010.
doi:10.1109/TGRS.2010.2047726

23. Bourgeois, J. M. and G. S. Smith, "A fully three-dimensional simulationof a ground-penetrating radar: FDTD theory comparedwith experiment ," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 1, 36-44, 1996.
doi:10.1109/36.481890

24. Bobrov, P. P., V. L. Mironov, O. V. Kondratieva, A. V. Repin, and , "Frequency dependence of permittivity of free and bound water in soils for different textures," PIERS Online, Vol. 5, No. 5, 426-430, 2009.
doi:10.2529/PIERS090219110307

25. Tsang, L., C. H. Chan, K. Pak, and H. Sangani, "Monte Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method," IEEE Trans. Antennas Propagat., Vol. 43, 851-859, 1995.
doi:10.1109/8.402205

26. Zhao, Z., et al., "Analysis of scattering from very large three-dimensional rough surface using MLFMM and ray-based analyses," IEEE Antennas and Propagation Magazine, Vol. 47, 20-30, 2005.
doi:10.1109/MAP.2005.1532538

27. Cousty, J., G. Bertrand, L. Najman, and M. Couprie, "Watershed cuts: Thinnings, shortest path forests, and topological watersheds," IEEE Trans. Patten Analysis and Machine Intelligence, Vol. 32, No. 5, 925-939, 2010.
doi:10.1109/TPAMI.2009.71