1. Yang, L. Q. and G. B. Giannakis, "Ultra-wideband communications: An idea whose time has come," IEEE Signal Proc. Mag., Vol. 21, No. 6, 26-54, 2004.
doi:10.1109/MSP.2004.1359140 Google Scholar
2. Withington, P., H. Fluhler and S. Nag, "Enhancing homeland security with advanced UWB sensors," EEE Microw. Mag., Vol. 4, No. 3, 51-58, 2003.
doi:10.1109/MMW.2003.1237477 Google Scholar
3. Cheolhee, P. and T. S. Rappaport, "Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee ," IEEE Wirel. Commun., Vol. 14, No. 4, 70-78, 2007.
doi:10.1109/MWC.2007.4300986 Google Scholar
4 . Alomainy, A., A. Sani, A. Rahman, J. Santas, and Y. Hao, "Transient characteristics of wearable antennas and radio propagation channels for ultra-wideband body-centric wireless communications ," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 875-884, Apr. 2009.
doi:10.1109/TAP.2009.2014588 Google Scholar
5. Win, M. Z. and R. A. Scholtz, "Ultra-wide bandwidth time hopping spread spectrum impulse radio for wireless multiple-access communications," IEEE Trans. on Commun., Vol. 48, No. 4, 679-689, 2000.
doi:10.1109/26.843135 Google Scholar
6. Batra, A., J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 9, 2123-2138, Sep. 2004.
doi:10.1109/TMTT.2004.834184 Google Scholar
7. Cramer, R. J., R. A. Scholtz, and M. Z. Win, "Evaluation of an ultra-wideband propagation channel," EEE Trans. Antennas Propag., Vol. 50, No. 4, 561-570, May 2002.
doi:10.1109/TAP.2002.1011221 Google Scholar
8. Cassioli, D., M. Z. Win, and A. F. Molisch, "The ultra-wide bandwidth indoor model: From statistical model to simulations," IEEE J. Select. Areas Commun., Vol. 20, No. 9, 1247-1257, 2002.
doi:10.1109/JSAC.2002.801228 Google Scholar
9. Molisch, A. F., K. Balakrishnan, C. C. Chong, D. Cassioli, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, K. Siwiak, and M. Z. Win, "A comprehensive model for ultra-wideband propagation channels," IEEE Trans. Antennas Propag., 3151-3166, 2006.
doi:10.1109/TAP.2006.883983 Google Scholar
10. Saleh, A. and R. Valenzuela, "A statistical model for indoor multipath propagation," IEEE J. Select. Areas Commun., Vol. 5, No. 2, 128-137, Feb. 1987.
doi:10.1109/JSAC.1987.1146527 Google Scholar
11. Foerster, J. (ed.), "IEEE 802.15.SG3a channel modeling sub-committee report final," IEEE p802.15-02/490r1-SG3a, Feb. 2003. Google Scholar
12. Molisch, A. F., et al., "IEEE 802.15.4a channel model -Final report," IEEE 802.15-04-0662-00-004a, Nov. 2004. Google Scholar
13. Carbonelli, C. and U. Mitra, "Clustered ML channel estimation for ultra-wideband signals," IEEE Trans. Wirel. Commun., Vol. 6, No. 7, 2412-2416, 2007.
doi:10.1109/TWC.2007.051006 Google Scholar
14. Witrisal, K., G. Leus, G. Janssen, M. Pausini, F. Troesch, T. Zasowski, and J. Romme, "Noncoherent ultra-wideband systems," IEEE Signal Proc. Mag., Vol. 26, No. 4, 48-66, 2009.
doi:10.1109/MSP.2009.932617 Google Scholar
15. Chen, Z. and Y.-P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011. Google Scholar
16. Molisch, A. F., "Ultra-wideband propagation channels," IEEE Proc., Vol. 97, No. 2, 353-371, Feb. 2009.
doi:10.1109/JPROC.2008.2008836 Google Scholar
17. Chuang, J., S. Bashir, and D. G. Michelson, "Automated identification of clusters in UWB channel impulse responses," Proc. of Canadian Conference on Electrical and Computer Engineering (CCECE), 761-764, 2007. Google Scholar
18. Stefanski, A., "Characterization of radio-wave propagation in indoor industrial environments,", Degree Thesis, Simon Fraser University, 2010. Google Scholar
19. Ciccognani, W., A. Durantini, and D. Cassioli, "Time domain propagation measurements of the UWB indoor channel using PN sequence in the FCC-compliant band 3.6-6 GHz," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1542-1549, Apr. 2005.
doi:10.1109/TAP.2005.844442 Google Scholar
20. Haneda, K., J.-I. Takada, and T. Kobayashi, "Cluster properties investigated from a series of ultra-wideband double directional propagation measurements in home environments," IEEE Trans. Antennas Propag., Vol. 54, No. 12, 3778-3788, 2006.
doi:10.1109/TAP.2006.886526 Google Scholar
21. Nikookar, H. and R. Prasad, Introduction to Ultra Wideband for Wireless Communications, Signals and Communication Technology, 164-171, Springer Science & Business Media B.V., Berlin, 2009. Google Scholar
22. Li, X., L. Yang, S. X. Gong, and Y. J. Yang, "A novel tri-band-notched monopole antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 139-147, 2009.
doi:10.1163/156939309787604580 Google Scholar
23. Song, H. W., J. N. Lee, J. K. Park, and H.-S. Lee, "Design of ultra wideband monopole antenna using parasitic open loops," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 561-570, 2009.
doi:10.1163/156939309788019778 Google Scholar
24. Danesfahani, R., L. Asadpor, and S. Soltani, "A small UWB CPW-FED monopole antenna with variable notched bandwidth," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1067-1076, 2009. Google Scholar
25. Chen, D. and C. H. Cheng, "A novel compact ultra-wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306 Google Scholar
26. De Villiees, J. P. and J. P. Jacobs, "Gaussian process modeling of CPW-FED slot antennas," Progress In Electromagnetics Research, Vol. 98, 233-249, 2009.
doi:10.2528/PIER09083103 Google Scholar
27. Hu, S., C. L. Law, and W. B. Dou, "A tapered slot antenna with flat and high gain for ultra-wideband applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 723-728, 2009.
doi:10.1163/156939309788019732 Google Scholar
28. Gao, G. P., M. Li, S. F. Niu, X. J. Li, B. N. Li, and J. S. Zhang, "Study of a novel wideband circular slot antenna having frequency band-notched function," Progress In Electromagnetics Research, Vol. 96, 141-154, 2009.
doi:10.2528/PIER09080308 Google Scholar
29. Xia, Y. Q., J. Luo, and D. J. Edwards, "Novel miniature printed monopole antenna with dual tunable band-notched characteristics for UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1783-1793, 2010. Google Scholar
30. Gong, J.-G., Q. Li, G. Zhao, Y. Song, and Y.-C. Jiao, "Design and analysis of a printed UWB antenna with multiple band-notched characteristics," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1745-1754, 2009.
doi:10.1163/156939309789566842 Google Scholar
31. Lin, C. C. and H. R. Chuang, "A 3-12 GHz UWB planar triangular monopole antenna with ridged ground-plane," Progress In Electromagnetics Research, Vol. 83, 307-321, 2008.
doi:10.2528/PIER08070502 Google Scholar
32. Wang, J. J., Y. Z. Yin, and X. W. Dai, "A novel fractal triangular monopole antenna with notched and truncated ground for UWB application," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1313-1321, 2009.
doi:10.1163/156939309789108561 Google Scholar
33. Eldek, A. A., "Numerical analysis of a small ultra-wideband microstrip-FED tap monopole antenna," Progress In Electromagnetics Research, Vol. 65, 59-69, 2006.
doi:10.2528/PIER06082305 Google Scholar
34. Bose, R., B. D. Steinberg, and A. Freedman, "Sequence CLEAN: A deconvolution technique for reducing side-lobe artifacts in microwave images of continuous targets," Proc. of the Thirteenth Annual Benjamin Franklin Symposium on Antenna and Microwave Technology in the 1990s, May 1995. Google Scholar
35. Alsehaili, M., S. Noghanian, A. R. Sebak, and D. A. Buchanan, "Angle and time of arrival statistics of a three-dimensional geometrical scattering channel model for indoor and outer propagation environment," Progress In Electromagnetics Research, Vol. 109, 191-209, 2010.
doi:10.2528/PIER10081106 Google Scholar
36. Fuhl, J., J. P. Rossi, and E. Bonek, "High-resolution 3D direction-of-arrival determination for urban mobile radio," IEEE Trans. Antennas Propag., Vol. 45, 672-682, Apr. 1997.
doi:10.1109/8.564093 Google Scholar
37. Shutin, D. and G. Kubin, "Cluster analysis of wireless channel impulse responses with hidden markov models," Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 949-952, May 2004. Google Scholar
38. Erceg, V., et al., "TGn channel models," IEEE 802.11-03/940r4, May 2004. Google Scholar
39. Proakis, J. G., Digital Communications, 4th edition, McGraw-Hill Companies, Inc., New York, USA, 2001. Google Scholar
40. Canny, J., "A computational approach to edge detection," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, 679-698, 1986.
doi:10.1109/TPAMI.1986.4767851 Google Scholar
41. Zhang, L. and P. Bao, "Edge detection by scale multiplication in wavelet domain," Pattern Recogn. Lett., Vol. 23, No. 14, 1771-1784, 2002.
doi:10.1016/S0167-8655(02)00151-4 Google Scholar
42. Heric, D. and D. Zazula, "Combined edge detection using wavelet transform and signal registration ," Image Vision Comput., Vol. 25, No. 5, 652-662, May 2007.
doi:10.1016/j.imavis.2006.05.008 Google Scholar
43. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor location technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705 Google Scholar
44. Gijbels, I., A. Lambert, and P. Qiu, "Edge-preserving image denoising and estimation of discontinuous surfaces," IEEE Trans. Pattern Anal. Mach. Intell. , Vol. 28, No. 7, 1075-1087, Jul. 2006.
doi:10.1109/TPAMI.2006.140 Google Scholar
45. Daubechies, I., Ten Lectures on Wavelets, SIAM, 1992. Google Scholar
46. Hernandez, E. and G. Weiss, A first Course on Wavelets, CRC Press, 1996. Google Scholar
47. Coifman, R. and M. V. Wickerhauser, "Wavelets and adapted waveform analysis," Mathematics and Applications, J. Benedetto and M. Frazier (eds.), CRC Press, Wavelets, 1994. Google Scholar
48. Mallat, S. G., "A theory of multi-resolution signal decomposition: the wavelet representation ," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 11, 674-693, 1989.
doi:10.1109/34.192463 Google Scholar
49. Walker, J. S., "Fourier analysis and wavelet analysis," Notices of the American Mathematical Society, Vol. 44, No. 6, 658-670, 1997. Google Scholar