Vol. 117
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-06-01
Efficient Cluster Identification for Measured Ultra-Wideband Channel Impulse Response in Vehicle Cabin
By
Progress In Electromagnetics Research, Vol. 117, 121-147, 2011
Abstract
Although the automatic and robust cluster identification is crucial for ultra-wideband propagation modeling, the existing schemes may either require interactions with analyst, or fail to produce reasonable clustering results in more universal propagation environments. In this article, we suggest a novel cluster identification algorithm. Rather than assuming the limited exponential power decay characteristics on UWB channels, from a novel perspective cluster identification is formulated as the local discontinuity detection based on wavelet analysis. Firstly, in order to comprehensively reflect the prevailing amplitude changes induced by new clusters, the moving averaging ratio is extracted from the measured UWB channel impulse responses. Subsequently, the appealing local-transient analysis ability of wavelet transform is properly exploited, and a computationally efficient cluster extraction method is developed. Distinguished from the subjective visual inspection and excluding any analyst interaction, the presented scheme can automatically discover multiple clusters. Our algorithm is premised on the general amplitude discontinuity, and hence is applicable to various complicated operation environments. Moreover, the produced clustering results, essentially depicting realistic physical propagations, are also independent of parameter configurations. Experiments on both simulated channels and the measured data in typical vehicle cabin further validate the proposed method.
Citation
Bin Li Zheng Zhou Dejian Li Shijun Zhai , "Efficient Cluster Identification for Measured Ultra-Wideband Channel Impulse Response in Vehicle Cabin," Progress In Electromagnetics Research, Vol. 117, 121-147, 2011.
doi:10.2528/PIER11041905
http://www.jpier.org/PIER/pier.php?paper=11041905
References

1. Yang, L. Q. and G. B. Giannakis, "Ultra-wideband communications: An idea whose time has come," IEEE Signal Proc. Mag., Vol. 21, No. 6, 26-54, 2004.
doi:10.1109/MSP.2004.1359140

2. Withington, P., H. Fluhler and S. Nag, "Enhancing homeland security with advanced UWB sensors," EEE Microw. Mag., Vol. 4, No. 3, 51-58, 2003.
doi:10.1109/MMW.2003.1237477

3. Cheolhee, P. and T. S. Rappaport, "Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee ," IEEE Wirel. Commun., Vol. 14, No. 4, 70-78, 2007.
doi:10.1109/MWC.2007.4300986

4 . Alomainy, A., A. Sani, A. Rahman, J. Santas, and Y. Hao, "Transient characteristics of wearable antennas and radio propagation channels for ultra-wideband body-centric wireless communications ," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 875-884, Apr. 2009.
doi:10.1109/TAP.2009.2014588

5. Win, M. Z. and R. A. Scholtz, "Ultra-wide bandwidth time hopping spread spectrum impulse radio for wireless multiple-access communications," IEEE Trans. on Commun., Vol. 48, No. 4, 679-689, 2000.
doi:10.1109/26.843135

6. Batra, A., J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, "Design of a multiband OFDM system for realistic UWB channel environments," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 9, 2123-2138, Sep. 2004.
doi:10.1109/TMTT.2004.834184

7. Cramer, R. J., R. A. Scholtz, and M. Z. Win, "Evaluation of an ultra-wideband propagation channel," EEE Trans. Antennas Propag., Vol. 50, No. 4, 561-570, May 2002.
doi:10.1109/TAP.2002.1011221

8. Cassioli, D., M. Z. Win, and A. F. Molisch, "The ultra-wide bandwidth indoor model: From statistical model to simulations," IEEE J. Select. Areas Commun., Vol. 20, No. 9, 1247-1257, 2002.
doi:10.1109/JSAC.2002.801228

9. Molisch, A. F., K. Balakrishnan, C. C. Chong, D. Cassioli, S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, K. Siwiak, and M. Z. Win, "A comprehensive model for ultra-wideband propagation channels," IEEE Trans. Antennas Propag., 3151-3166, 2006.
doi:10.1109/TAP.2006.883983

10. Saleh, A. and R. Valenzuela, "A statistical model for indoor multipath propagation," IEEE J. Select. Areas Commun., Vol. 5, No. 2, 128-137, Feb. 1987.
doi:10.1109/JSAC.1987.1146527

11. Foerster, J. (ed.), "IEEE 802.15.SG3a channel modeling sub-committee report final," IEEE p802.15-02/490r1-SG3a, Feb. 2003.

12. Molisch, A. F., et al., "IEEE 802.15.4a channel model -Final report," IEEE 802.15-04-0662-00-004a, Nov. 2004.

13. Carbonelli, C. and U. Mitra, "Clustered ML channel estimation for ultra-wideband signals," IEEE Trans. Wirel. Commun., Vol. 6, No. 7, 2412-2416, 2007.
doi:10.1109/TWC.2007.051006

14. Witrisal, K., G. Leus, G. Janssen, M. Pausini, F. Troesch, T. Zasowski, and J. Romme, "Noncoherent ultra-wideband systems," IEEE Signal Proc. Mag., Vol. 26, No. 4, 48-66, 2009.
doi:10.1109/MSP.2009.932617

15. Chen, Z. and Y.-P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011.

16. Molisch, A. F., "Ultra-wideband propagation channels," IEEE Proc., Vol. 97, No. 2, 353-371, Feb. 2009.
doi:10.1109/JPROC.2008.2008836

17. Chuang, J., S. Bashir, and D. G. Michelson, "Automated identification of clusters in UWB channel impulse responses," Proc. of Canadian Conference on Electrical and Computer Engineering (CCECE), 761-764, 2007.

18. Stefanski, A., "Characterization of radio-wave propagation in indoor industrial environments,", Degree Thesis, Simon Fraser University, 2010.

19. Ciccognani, W., A. Durantini, and D. Cassioli, "Time domain propagation measurements of the UWB indoor channel using PN sequence in the FCC-compliant band 3.6-6 GHz," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1542-1549, Apr. 2005.
doi:10.1109/TAP.2005.844442

20. Haneda, K., J.-I. Takada, and T. Kobayashi, "Cluster properties investigated from a series of ultra-wideband double directional propagation measurements in home environments," IEEE Trans. Antennas Propag., Vol. 54, No. 12, 3778-3788, 2006.
doi:10.1109/TAP.2006.886526

21. Nikookar, H. and R. Prasad, Introduction to Ultra Wideband for Wireless Communications, Signals and Communication Technology, 164-171, Springer Science & Business Media B.V., Berlin, 2009.

22. Li, X., L. Yang, S. X. Gong, and Y. J. Yang, "A novel tri-band-notched monopole antenna," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 139-147, 2009.
doi:10.1163/156939309787604580

23. Song, H. W., J. N. Lee, J. K. Park, and H.-S. Lee, "Design of ultra wideband monopole antenna using parasitic open loops," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 561-570, 2009.
doi:10.1163/156939309788019778

24. Danesfahani, R., L. Asadpor, and S. Soltani, "A small UWB CPW-FED monopole antenna with variable notched bandwidth," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1067-1076, 2009.

25. Chen, D. and C. H. Cheng, "A novel compact ultra-wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306

26. De Villiees, J. P. and J. P. Jacobs, "Gaussian process modeling of CPW-FED slot antennas," Progress In Electromagnetics Research, Vol. 98, 233-249, 2009.
doi:10.2528/PIER09083103

27. Hu, S., C. L. Law, and W. B. Dou, "A tapered slot antenna with flat and high gain for ultra-wideband applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 723-728, 2009.
doi:10.1163/156939309788019732

28. Gao, G. P., M. Li, S. F. Niu, X. J. Li, B. N. Li, and J. S. Zhang, "Study of a novel wideband circular slot antenna having frequency band-notched function," Progress In Electromagnetics Research, Vol. 96, 141-154, 2009.
doi:10.2528/PIER09080308

29. Xia, Y. Q., J. Luo, and D. J. Edwards, "Novel miniature printed monopole antenna with dual tunable band-notched characteristics for UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1783-1793, 2010.

30. Gong, J.-G., Q. Li, G. Zhao, Y. Song, and Y.-C. Jiao, "Design and analysis of a printed UWB antenna with multiple band-notched characteristics," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1745-1754, 2009.
doi:10.1163/156939309789566842

31. Lin, C. C. and H. R. Chuang, "A 3-12 GHz UWB planar triangular monopole antenna with ridged ground-plane," Progress In Electromagnetics Research, Vol. 83, 307-321, 2008.
doi:10.2528/PIER08070502

32. Wang, J. J., Y. Z. Yin, and X. W. Dai, "A novel fractal triangular monopole antenna with notched and truncated ground for UWB application," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1313-1321, 2009.
doi:10.1163/156939309789108561

33. Eldek, A. A., "Numerical analysis of a small ultra-wideband microstrip-FED tap monopole antenna," Progress In Electromagnetics Research, Vol. 65, 59-69, 2006.
doi:10.2528/PIER06082305

34. Bose, R., B. D. Steinberg, and A. Freedman, "Sequence CLEAN: A deconvolution technique for reducing side-lobe artifacts in microwave images of continuous targets," Proc. of the Thirteenth Annual Benjamin Franklin Symposium on Antenna and Microwave Technology in the 1990s, May 1995.

35. Alsehaili, M., S. Noghanian, A. R. Sebak, and D. A. Buchanan, "Angle and time of arrival statistics of a three-dimensional geometrical scattering channel model for indoor and outer propagation environment," Progress In Electromagnetics Research, Vol. 109, 191-209, 2010.
doi:10.2528/PIER10081106

36. Fuhl, J., J. P. Rossi, and E. Bonek, "High-resolution 3D direction-of-arrival determination for urban mobile radio," IEEE Trans. Antennas Propag., Vol. 45, 672-682, Apr. 1997.
doi:10.1109/8.564093

37. Shutin, D. and G. Kubin, "Cluster analysis of wireless channel impulse responses with hidden markov models," Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 949-952, May 2004.

38. Erceg, V., et al., "TGn channel models," IEEE 802.11-03/940r4, May 2004.

39. Proakis, J. G., Digital Communications, 4th edition, McGraw-Hill Companies, Inc., New York, USA, 2001.

40. Canny, J., "A computational approach to edge detection," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, 679-698, 1986.
doi:10.1109/TPAMI.1986.4767851

41. Zhang, L. and P. Bao, "Edge detection by scale multiplication in wavelet domain," Pattern Recogn. Lett., Vol. 23, No. 14, 1771-1784, 2002.
doi:10.1016/S0167-8655(02)00151-4

42. Heric, D. and D. Zazula, "Combined edge detection using wavelet transform and signal registration ," Image Vision Comput., Vol. 25, No. 5, 652-662, May 2007.
doi:10.1016/j.imavis.2006.05.008

43. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor location technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705

44. Gijbels, I., A. Lambert, and P. Qiu, "Edge-preserving image denoising and estimation of discontinuous surfaces," IEEE Trans. Pattern Anal. Mach. Intell. , Vol. 28, No. 7, 1075-1087, Jul. 2006.
doi:10.1109/TPAMI.2006.140

45. Daubechies, I., Ten Lectures on Wavelets, SIAM, 1992.

46. Hernandez, E. and G. Weiss, A first Course on Wavelets, CRC Press, 1996.

47. Coifman, R. and M. V. Wickerhauser, "Wavelets and adapted waveform analysis," Mathematics and Applications, J. Benedetto and M. Frazier (eds.), CRC Press, Wavelets, 1994.

48. Mallat, S. G., "A theory of multi-resolution signal decomposition: the wavelet representation ," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 11, 674-693, 1989.
doi:10.1109/34.192463

49. Walker, J. S., "Fourier analysis and wavelet analysis," Notices of the American Mathematical Society, Vol. 44, No. 6, 658-670, 1997.