1. Swanson, D. G. and W. J. R. Hofer, Microwave Circuit Modeling Using Electromagnetic Field Simulation, Artech House Inc., Norwood, MA, 2003.
2. Ahmed, I., E. H. Khoo, E. P. Li, and R. Mittra, "A hybrid approach for solving coupled Maxwell and Schrödinger equations arising in the simulation of nano-devices," IEEE Antennas and Wireless Component Letters, Vol. 9, 914-916, 2010.
doi:10.1109/LAWP.2010.2076411 Google Scholar
3. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, Wiley-IEEE, 1998.
4. Liu, Z. H., E. K. Chua, and K. Y. See, "Accurate and efficient evaluation of method of moments matrix based on a generalized analytical approach," Progress In Electromagnetics Research, Vol. 94, 367-382, 2009.
doi:10.2528/PIER09063002 Google Scholar
5. Yee, K. S. and Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, "IEEE Trans. Antennas Propag.,", Vol. 14, 302-307, May 1966. Google Scholar
6. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026 Google Scholar
7. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, 2008.
doi:10.1109/TAP.2008.2005544 Google Scholar
8. Gaidamauskaite, E. and R. Baronas, "A comparison of finite difference schemes for computational modelling of biosensors," Nonlinear Analysis: Modelling and Control, Vol. 12, 359-369, 2007. Google Scholar
9. Yang, S., Y. Chen, and Z.-P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507 Google Scholar
10. Chen, J., "Application of the nearly perfectly matched layer for seismic wave propagation in 2D homogeneous isotropic media," Geophysical Prospecting, 2011, doi: 10.1111/j.1365-2478.2011.00949.x. Google Scholar
11. Ingo, W., "Finite difference time-domain simulation of electro-magnetic fields and microwave circuits," International Journal of Numerical Modelling, Vol. 5, 163-182. Google Scholar
12. Seo, M., G. H. Song, et al. "Nonlinear dispersive three-dimensional finite-difference time-domain analysis for photonic-crystal lasers," Opt. Express, Vol. 13, 9645-9651, 2005.
doi:10.1364/OPEX.13.009645 Google Scholar
13. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.
14. Maxfield, C., The Design Warrior's Guide to FPGAs, Elsevier, 2004.
15. Elsherbeni, A. Z. and V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with Matlab Simulations, SciTech Pub., 2009.
16. Zunoubi, M. R., J. Payne, and W. P. Roach, "CUDA implementation of TEz-FDTD solution of Maxwell's equations in dispersive media ," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 756-759, 2010.
doi:10.1109/LAWP.2010.2060181 Google Scholar
17. Savioja, L., "Real-time 3D finite-difference time-domain simulation of low and mid frequency room acoustics," Proc. of the 13th Int. Conference on Digital Audio E®ects (DAFx-10), Graz, Austria, September 6-10, 2010.
18. Chen, S., S. Dong, and X.-L. Wang, "GPU-based accelerated FDTD simulations for double negative (DNG) materials applications," International conference on Microwave and Millimeter Wave Technology (ICMMT) , 839-841, 2010.
doi:10.1109/ICMMT.2010.5525091 Google Scholar
19. Shams, R. and P. Sadeghi, "On optimization of finite-difference time-domain (FDTD) computation on heterogeneous and GPU clusters," J. Parallel Distrib. Comput., 2010. Google Scholar
20. Zainud-Deen, S. H., E. Hassan, M. S. Ibrahim, K. H. Awadalla, and A. Z. Botros, "Electromagnetic scattering using GPU based finite difference frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.
doi:10.2528/PIERB09060703 Google Scholar
21. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer-Verlag, 2007.
22. Ahmed, I., C. E. Png, E. P. Li, and R. Vahldieck, "Electromagnetic propagation in a novel Ag nanoparticle based plasmonic structure," Opt. Express, Vol. 17, 337-345, 2009.
doi:10.1364/OE.17.000337 Google Scholar
23. Shalaev, V. M. and S. Kawata, Nanophotonics with Surface Plasmons (Advances in Nano-Optics and Nano-Photonics), Elsevier, 2007.
24. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term in FDTD," IEEE Micro. Guided Wave Lett., Vol. 7, No. 5, May 1997. Google Scholar
25. Baumann, D., C. Fumeaux, C. Hafner, and E. P. Li, "A modular implementation of dispersive materials for time-domain simulations with application to gold nanospheres at optical frequencies," Opt. Express, Vol. 17, No. 17, 15186-15200, August 2009.
doi:10.1364/OE.17.015186 Google Scholar
26. Shibayama, J., A. R. Nomura Ando, J. Yamauchi, and H. Nakano, "A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices," IEEE Journal of Quantum Electronics, Vol. 46, No. 1, 40-49, 2010.
doi:10.1109/JQE.2009.2024328 Google Scholar
27. Zhang, Y. Q. and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603 Google Scholar
28. Wei, B., S.-Q. Zhang, Y.-H Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.
doi:10.2528/PIERB09090306 Google Scholar
29. Mur, G., "Absorbing boundary conditions for the finite difference approximation of the time domain electromagnetic field equations," IEEE Transaction on Electromagnetic Compatibility, Vol. 23, No. 4, 337-382, November 1981. Google Scholar
30. Vial, A., A. S. Grimault, D. Macias, D. Barchiesi, and M. D. Chapelle, "Improved analytical fit of gold dispersionApplication to the modeling of extinction spectra with a finite-difference time-domain method," Physical Review B, Vol. 71, No. 8, 085416, February 2005.
doi:10.1103/PhysRevB.71.085416 Google Scholar
31. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "Gpu accelerated unconditionally stable crank-nicolson FDTD method for the analysis of three-dimensional microwave circuits ," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606 Google Scholar