1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
2. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759 Google Scholar
3. Ramakrishna, S. A., J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Optics, Vol. 50, 1419-1430, 2003. Google Scholar
4. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime ," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110 Google Scholar
5. Jin, Y., "Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.
doi:10.2528/PIER10051309 Google Scholar
6. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.2528/PIER09092801 Google Scholar
7. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247-8256, 2006.
doi:10.1364/OE.14.008247 Google Scholar
8. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368 Google Scholar
9. De Ceglia, D., M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A, Vol. 77, 033848, 2008.
doi:10.1103/PhysRevA.77.033848 Google Scholar
10. Li, X., S. L. He, and Y. Jin, "Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies," Phys. Rev. B, Vol. 75, 045103, 2007.
doi:10.1103/PhysRevB.75.045103 Google Scholar
11. Luo, C., S. G. Johnson, and J. D. Joannopoulos, "All-angle negative refraction without negative effective index," Phys. Rev. B, Vol. 65, 201104(R), 2002. Google Scholar
12. Pustai, D. M., S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, "Analysis of splitters for self-collimated beams in planar photonic crystals," Opt. Express, Vol. 12, 1823-1831, 2004.
doi:10.1364/OPEX.12.001823 Google Scholar
13. Augustin, M., R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, "Self-guiding of infrared and visible light in photonic crystal slabs," Appl. Phys. B, Vol. 81, 313, 2005.
doi:10.1007/s00340-005-1839-9 Google Scholar
14. Chew, W. C., Waves and Fields in Inhomogeneous Media, 161-182, Wiley-IEEE Press, 1999.
15. Ahmed, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated PEMC circular cylinder," Progress In Electromagnetics Research, Vol. 92, 91-102, 2009.
doi:10.2528/PIER09030503 Google Scholar
16. Kildishev, A. V. and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett., Vol. 32, 3432-3434, 2007.
doi:10.1364/OL.32.003432 Google Scholar
17. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am. A, Vol. 24, 10, 2007.
doi:10.1364/JOSAA.24.000A52 Google Scholar
18. Kildishev, A. V., U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. Narimanov, "Materializing a binary hyperlens design," Appl. Phys. Lett., Vol. 94, 071102, 2009.
doi:10.1063/1.3081403 Google Scholar
19. Shvets, G. and Y. Urzhumov, "Polariton-enhanced near field lithography and imaging with infrared light," Mater. Res. Soc. Symp. Proc., Vol. 820, R1.2.1, 2004.
doi:10.1557/PROC-820-R1.2 Google Scholar
20. Korobkin, D., Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B, Vol. 23, 468-478, 2005.
doi:10.1364/JOSAB.23.000468 Google Scholar
21. Li, X., F. Zhuang, and C. V. KÄohnenkamp, "Optimized effective permittivity to improve imaging resolution of multilayered structures in infrared," J. Opt. Soc. Am. A, Vol. 26, 365-370, 2009.
doi:10.1364/JOSAA.26.000365 Google Scholar
22. Li, X. and Y. Jin, "Appropriate interface termination to improve imaging resolution of multilayered structures in the infrared and optical canalization regime," J. Opt. Soc. Am. A, Vol. 24, 1861-1864, 2008. Google Scholar
23. Weber, M. J., Handbook of Optical Materials, CRC Press, New York, 2003.
24. Xie, H., F. Kong, and K. Li, "The electric field enhancement and resonance in optical antenna composed of Au nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 535-548, 2009.
doi:10.1163/156939309787612419 Google Scholar
25. Pendry, J. B. and S. A. Ramakrishna, "Near field lenses in two dimensions," J. Phys., Condensed Matter, Vol. 14, 1-17, 2002. Google Scholar
26. Pendry, J. B. and S. A. Ramakrishna, "Refining the perfect lens," Physica B, Vol. 338, 329-332, 2003.
doi:10.1016/j.physb.2003.08.014 Google Scholar
27. Gao, D. and L. Gao, "Tunable lateral shift through nonlinear composites of nonspherical particles," Progress In Electromagnetics Research, Vol. 99, 273-287, 2009.
doi:10.2528/PIER09102404 Google Scholar
28. Li, X. and F. Zhuang, "The multilayered structures with high subwavelength resolution based on the metal-dielectric composites," J. Opt. Soc. Am. A, Vol. 26, 2521-2525, 2009.
doi:10.1364/JOSAA.26.002521 Google Scholar
29. Wu, C. J., J. J. Liao, and T. W. Chang, "Tunable multilayer Fabry-Perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010. Google Scholar