1. Liu, Z. J. and L. Carin, "Efficient evaluation of the half-space Green's function for fast-multipole scattering models," Microw. Opt. Technol. Lett., Vol. 29, No. 6, 388-392, 2001.
doi:10.1002/mop.1186 Google Scholar
2. Guo, L. X., A. Q.Wang, and J. Ma, "Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MoM based on PC clusters," Progress In Electromagnetics Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002 Google Scholar
3. Wang, X. and L. W. Li, "Numerical characterization of bistatic scattering from pec cylinder partially embedded in a dielectric rough surface interface: Horizontal polarization," Progress In Electromagnetics Research, Vol. 91, 35-51, 2009.
doi:10.2528/PIER09013001 Google Scholar
4. Wang, X., Y. B. Gan, and L. W. Li, "Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 2003. Google Scholar
5. Johnson, J. T., "A numerical study of scattering from an object above a rough surface," IEEE Trans. Antennas Propag., Vol. 50, No. 10, 1361-1367, 2002.
doi:10.1109/TAP.2002.802152 Google Scholar
6. Ye, H. X. and Y. Q. Jin, "A hybrid analytic-numerical algorithm of scattering from an object above a rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 5, 1174-1180, 2007.
doi:10.1109/TGRS.2007.892609 Google Scholar
7. Bausssard, A., M. Rochdi, and A. Khenchaf, "PO/MEC-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011. Google Scholar
8. Xu, F. and Y. Q. Jin, "Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface," IEEE Trans. Antennas Propag., Vol. 57, No. 5, 1495-1505, 2009.
doi:10.1109/TAP.2009.2016691 Google Scholar
9. Guo, L. X. and H. Zeng, "Bistatic scattering from a three dimensional object above a two dimensional randomly rough surface modeled with the parallel FDTD approach," J. Opt. Soc. Am., Vol. 26, No. 11, 2383-2392, 2009.
doi:10.1364/JOSAA.26.002383 Google Scholar
10. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188 Google Scholar
11. Yang, W., Z. Q. Zhao, and Z. P. Nie, "Fast fourier transform multilevel fast multipole algorithm in rough ocean surface scattering," Electromagnetics, Vol. 29, No. 7, 541-552, 2009.
doi:10.1080/02726340903167079 Google Scholar
12. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603 Google Scholar
13. Chew, W. C., T. J. Cui, and J. M. Song, "A FAFFA-MLFMA algorithm for electromagnetic scattering," IEEE Trans. Antennas Propag., Vol. 50, No. 11, 1641-1648, 2002.
doi:10.1109/TAP.2002.802162 Google Scholar
14. Thorsos, E. I. and D. R. Jackson, "The validity of the perturbation approximation for rough surface scattering using a gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 86, No. 1, 261-277, 1989.
doi:10.1121/1.398342 Google Scholar
15. Ye, H. X., Y. Q. Jin, and , "Fast iterative approach to difference scattering from the target above a rough surface ," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 1, 108-115, 2006.
doi:10.1109/TGRS.2005.859955 Google Scholar
16. Zhang, X. Y. and X. Q. Sheng, "Highly efficient hybrid method for computing the backscattering from objects above a dielectric rough surface,", Vol. 30, No. 4, 460-463, 2010 (in Chinese). Google Scholar
17. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
18. Pierson, W. and L. Moskowitz, "A proposed spectral form for fully developed wind seas based upon the similarity theory of S. A. Kitaigorodskii," Journal of Geophysical Research, Vol. 69, 5181-5190, 1964.
doi:10.1029/JZ069i024p05181 Google Scholar