1. Nicorovici, N. A., G. W. Milton, R. C. Mcphedran, G. W. Milton, and R. C. Mcphedran, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Optics Express, Vol. 15, 6314-6323, May 2007.
doi:10.1364/OE.15.006314 Google Scholar
2. Alù, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Physical Review E, Vol. 72, 016623, Jul. 2005.
doi:10.1103/PhysRevE.72.016623 Google Scholar
3. Alù, A. and N. Engheta, "Cloaking and transparency for collections of particles with metamaterial and plasmonic covers," Optics Express, Vol. 15, 7578-7590, Jun. 2007.
doi:10.1364/OE.15.007578 Google Scholar
4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, May 2006.
doi:10.1126/science.1125907 Google Scholar
5. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, May 2006.
doi:10.1126/science.1126493 Google Scholar
6. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Material electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Oct. 2006.
doi:10.1126/science.1133628 Google Scholar
7. Chen, H. S., B. I.Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Physical Review Letters, Vol. 90, 063903, Oct. 2007. Google Scholar
8. Ruan, Z. C., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Physical Review Letters, Vol. 99, 113903, Sep. 2007.
doi:10.1103/PhysRevLett.99.113903 Google Scholar
9. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Y. Kurylev, M. Lassas, and G. Uhlmann from metamaterials," Physical Review Letters, Vol. 99, 183901, Oct. 2007.
doi:10.1103/PhysRevLett.99.183901 Google Scholar
10. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 6, 87-95, Apr. 2007.
doi:10.1016/j.photonics.2007.07.013 Google Scholar
11. Huanyang, C. and C. T. Chan, "Acoustic cloaking in three dimensions using acoustic metamaterials," Applied Physics Letters, Vol. 91, 183518, Nov. 2007. Google Scholar
12. Kong, F., B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, "Planar focusing antenna design by using coordinate transformation technology," Applied Physics Letters, Vol. 91, 253507, Dec. 2007.
doi:10.1063/1.2824481 Google Scholar
13. Jiang, W. X., T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, "Cylindrical-to-plane-wave conversion via embedded optical transformation ," Applied Physics Letters, Vol. 92, 261903, Jul. 2008.
doi:10.1063/1.2953447 Google Scholar
14. Wu, Y., Y. Liu, and S. Li, "Dual-band modi¯ed Wilkinson power divider without transmission line stubs and reactive components," Progress In Electromagnetics Research, Vol. 96, 9-20, 2009.
doi:10.2528/PIER09072109 Google Scholar
15. Heidari, A. A., M. Heyrani, and M. Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress In Electromagnetics Research, Vol. 92, 195-208, 2009.
doi:10.2528/PIER09032401 Google Scholar
16. Wu, Y., Y. Liu, and S. Li, "An unequal dual-frequency Wilkinson power divider with optional isolation structure," Progress In Electromagnetics Research, Vol. 91, 393-411, 2009.
doi:10.2528/PIER09030501 Google Scholar
17. Wu, Y., Y. Liu, and S. Li, "A new dual-frequency Wilkinson power divider," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 483-492, 2009.
doi:10.1163/156939309787612400 Google Scholar
18. Abdalla, M. A. and Z. Hu, "Multi-band functional tunable LH impedance transformer," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 39-47, 2009.
doi:10.1163/156939309787604652 Google Scholar
19. Zhou, S., J. Ma, and J. Deng, "A novel dual band-notched ultra-wideband antenna," ultra-wideband antenna, Applications, Vol. 23, No. 1, 57-63, 2009. Google Scholar
20. Wang, X. H., L. Chen, X. W. Shi, Y. F. Bai, L. Chen, and X. Q. Chen, "Planar dual-frequency power divider using umbrella-shaped resonator," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5/6, 597-606, 2010.
doi:10.1163/156939310791036377 Google Scholar
21. Li, J. C., J. C. Nan, X. Y. Shan, and Q. F. Yan, "A novel modified dual-frequency Wilkinson power divider with open stubs and optional isolation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2223-2235, 2010.
doi:10.1163/156939310793699163 Google Scholar
22. Abu, M., M. K. A. Rahim, O. Ayop, and F. Zubir, "Triple-band printed Dipole antenna with single-band AMC-HIS," Progress In Electromagnetics Research B, Vol. 20, 225-244, 2010.
doi:10.2528/PIERB10022301 Google Scholar
23. Vegesna, S. and M. Saed, "Novel compact dual-band bandpass microstrip filter," Progress In Electromagnetics Research B, Vol. 20, 245-262, 2010.
doi:10.2528/PIERB10012210 Google Scholar
24. Qaroot, A., N. Dib, and A. Gheethan, "Design methodology of multi-frequency un-equal split Wilkinson power divider using transmission line transformers," Progress In Electromagnetics Research B, Vol. 22, 1-21, 2010.
doi:10.2528/PIERB10042809 Google Scholar
25. Wu, Y., Y. Liu, S. Li, C. Yu, and X. Liu, "Closed-form design method of an N-way dual-band Wilkinson hybrid power divider," Progress In Electromagnetics Research, Vol. 101, 97-114, 2010.
doi:10.2528/PIER09111906 Google Scholar
26. Lin, Z. and Q. X. Chu, "A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines ," Progress In Electromagnetics Research, Vol. 103, 271-284, 2010.
doi:10.2528/PIER10012202 Google Scholar
27. Yang, R. Y., K. Hon, C. Y. Hung, and C. S. Ye, "Design of dual-band bandpass ¯lters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504 Google Scholar
28. Wood, B. and J. B. Pendry, "Metamaterials at zero frequency," Journal of Physics: Condensed Matter, Vol. 19, 076208, Feb. 2007.
doi:10.1088/0953-8984/19/7/076208 Google Scholar
29. Chen, H., Ruan, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, "Extending the bandwidth of electromagnetic cloaks," Physical Review B, Vol. 76, 241104, Dec. 2007.
doi:10.1103/PhysRevB.76.241104 Google Scholar
30. Alù, A. and N. Engheta, "Multifrequency optical invisibility cloak with layered plasmonic shells," Physical Review Letters, Vol. 100, 113901, May 2008.
doi:10.1103/PhysRevLett.100.113901 Google Scholar
31. Wang, H. L. and X. D. Zhang, "Achieving multifrequency transparency with cylindrical plasmonic cloak," Journal of Applied Physics, Vol. 106, 053302, 2009.
doi:10.1063/1.3212554 Google Scholar
32. Liu, Y. W. and Y. J. Meng, "Electrically controlled multifre-quency ferroelectric cloak," Optics Express, Vol. 18, No. 12, 12646-12652, 2010.
doi:10.1364/OE.18.012646 Google Scholar
33. Serebryannikov, A. E. and E. Ozbay, "Non-ideal multifrequency cloaking using strongly dispersive materials," Physica B: Condensed Matter, Vol. 405, No. 14, 2959-2963, 2010.
doi:10.1016/j.physb.2010.01.013 Google Scholar
34. Li, P. N., Y. W. Liu, Y. J. Meng, and M. J. Zhu, "A multifrequency cloak with a single shell of negative index metamaterials," Chin. Phys. Lett, Vol. 28, No. 6, 064206, 2011.
doi:10.1088/0256-307X/28/6/064206 Google Scholar
35. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
36. Grbic, A. and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," IEEE Trans. Antennas Propag., Vol. 51, 2604-2611, Oct. 2003. Google Scholar
37. Lin, I.-H., M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 52, 1142-1149, Apr. 2004.
doi:10.1109/TMTT.2004.825747 Google Scholar
38. Alitalo, P., S. Maslovski, and S. Tretyakov, "Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens," Journal of Applied Physics, Vol. 99, 124910, Jun. 2006.
doi:10.1063/1.2206709 Google Scholar
39. Iyer, A. K. and G. V. Eleftheriades, "A multilayer negative-refractive-index transmission-line (NRI-TL) metamaterial free-space lens at X-band," IEEE Trans. Antennas Propag., Vol. 55, 2746-2753, Oct. 2007. Google Scholar
40. Iyer, A. K. and G. V. Eleftheriades, "A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation ," Applied Physics Letters, Vol. 92, 261106, Jul. 2008.
doi:10.1063/1.2953709 Google Scholar
41. Chen, A. K., P. Fischer, and F. W. Wise, "Negative refraction at optical frequencies in nonmagnetic two-component molecular media," Physical Review Letters, Vol. 95, 067402, Aug. 2005.
doi:10.1103/PhysRevLett.95.067402 Google Scholar