1. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Transactions on Antennas and Propagation, Vol. 16, 767-769, Nov. 1968.
doi:10.1109/TAP.1968.1139296 Google Scholar
2. Ufimtsev, P. Y., Theory of Edge Diffraction in Electromagnetics, Tech Science Press, 2003.
3. Moschovitis, C. G., H. Anastassiu, and P. V. Frangos, "Scattering of electromagnetic waves from a rectangular plate using an extended stationary phase method based on Fresnel functions (SPM-F)," Progress In Electromagnetics Research, Vol. 107, 63-99, 2010.
doi:10.2528/PIER10040104 Google Scholar
4. Keller, J. B., "Geometrical theory of diffction," Journal of the Optical Society of America, 1962. Google Scholar
5. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, 1448-1461, Nov. 1974. Google Scholar
6. Ling, H., R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and Propagation, Vol. 37, 194-205, Feb. 1989.
doi:10.1109/8.18706 Google Scholar
7. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, 1993.
8. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2002.
9. Salazar-Palma, M., T. K. Sarkar, L. E. García-Castillo, T. Roy, and A. R. Djordjevic, Iterative and Self-adaptive Finite-elements in Electromagnetic Modeling, Artech House Publishers, Inc., Norwood, MA, 1998.
10. Taflove, M., Advances in Computational Electrodynamics: The Finite-difference Time-domain Method , Artech House Publishers, Inc., 1998.
11. Ilic, M., M. Djordjevic, A. Ilic, and B. Notaros, "Higher order hybrid FEM-MoM technique for analysis of antennas and scatterers," IEEE Transactions on Antennas and Propagation, Vol. 57, 1452-1460, May 2009.
doi:10.1109/TAP.2009.2016725 Google Scholar
12. Chen, M., Y. Zhang, X. W. Zhao, and C. H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Transactions on Antennas and Propagation, Vol. 55, 407-413, Feb. 2007.
doi:10.1109/TAP.2006.889814 Google Scholar
13. Becker, A. and V. Hansen, "A hybrid method combining the multitemporal resolution time-domain method of moments with the time-domain geometrical theory of di®raction for thin-wire antenna problems," IEEE Transactions on Antennas and Propagation, Vol. 54, 953-960, Mar. 2006.
doi:10.1109/TAP.2006.869906 Google Scholar
14. Fernandez-Recio, R., L. E. García-Castillo, I. Gomez-Revuelto, and M. Salazar-Palma, "Fully coupled hybrid FEM-UTD method using NURBS for the analysis of radiation problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 774-783, Mar. 2008.
doi:10.1109/TAP.2008.916878 Google Scholar
15. Gomez-Revuelto, I., L. E. García-Castillo, M. Salazar-Palma, and T. K. Sarkar, "Fully coupled hybrid method FEM/highfrequency technique for the analysis of radiation and scattering problems ," Microwave and Optical Technology Letters, Vol. 47, 104-107, Oct. 2005.
doi:10.1002/mop.21094 Google Scholar
16. Liu, Z.-L. and J. Yang, "Analysis of electromagnetic scattering with higher-order moment method and NURBS model," Progress In Electromagnetics Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704 Google Scholar
17. Wang, S., X. Guan, D.-W. Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher-order MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101 Google Scholar
18. Lai, B., N. Wang, H.-B. Yuan, and C.-H. Liang, "Hybrid method of higher-order MoM and Nyström discretization PO for 3D PEC problems," Progress In Electromagnetics Research, Vol. 109, 381-398, 2010.
doi:10.2528/PIER10081401 Google Scholar
19. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, 7-12, Jun. 1993.
doi:10.1109/74.250128 Google Scholar
20. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Transactions on Computer Aided Design Integrated Circuits, Vol. 16, 1059-1072, Oct. 1997.
doi:10.1109/43.662670 Google Scholar
21. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems ," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504 Google Scholar
22. Hu, L., L.-W. Li, and T. S. Yeo, "Analysis of scattering by large inhomogeneous bi-anisotropic objects using AIM," Progress In Electromagnetics Research, Vol. 99, 21-36, 2009.
doi:10.2528/PIER09101204 Google Scholar
23. Seo, S. M. and J. F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Transactions on Magnetics, Vol. 41, 1476-1479, May 2005.
doi:10.1109/TMAG.2005.844564 Google Scholar
24. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603 Google Scholar
25. Seo, S. M. and J. F. Lee, "A single level low rank IE-QR algorithm for PEC scattering problems using EFIE formulation," IEEE Transactions on Antennas and Propagation, Vol. 52, 2141-2146, Aug. 2004.
doi:10.1109/TAP.2004.832367 Google Scholar
26. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410 Google Scholar
27. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, Nov. 2005. Google Scholar
28. Hackbusch, W., "A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices," Computing, Vol. 62, No. 2, 89-108, 1999.
doi:10.1007/s006070050015 Google Scholar
29. Bebendorf, M. and W. Hackbusch, "Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L-infinity-coefficients," Numerische Mathematik, Vol. 95, No. 1, 1-28, 2003.
doi:10.1007/s00211-002-0445-6 Google Scholar
30. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Transactions on Antennas and Propagation, Vol. 44, 1086-1093, Aug. 1996.
doi:10.1109/8.511816 Google Scholar
31. Rius, J., J. Parron, A. Heldring, J. Tamayo, and E. Ubeda, "Fast iterative solution of integral equations with method of moments and matrix decomposition algorithm; singular value decomposition," IEEE Transactions on Antennas and Propagation, Vol. 56, 2314-2324, Aug. 2008.
doi:10.1109/TAP.2008.926762 Google Scholar
32. Vion, A., R. V. Sabariego, and C. Geuzaine, "A model reduction algorithm for solving multiple scattering problems using iterative methods," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1470-1473, 2011.
doi:10.1109/TMAG.2010.2078800 Google Scholar
33. Prakash, V. and R. Mittra, "Characteristic basis function method: A new technique for e±cient solution of method of moment matrix equations," Microwave and Optical Technology Letters, Vol. 36, 95-100, Jan. 2003.
doi:10.1002/mop.10685 Google Scholar
34. Delgado, C., M. Catedra, and R. Mittra, "Efficient multilevel approach for the generation of characteristic basis functions for large scatters," IEEE Transactions on Antennas and Propagation, Vol. 56, 2134-2137, Jul. 2008. Google Scholar
35. Shifman, Y. and Y. Leviatan, "Scattering by a groove in a conducting plane --- A PO-MoM hybrid formulation and wavelet analysis," IEEE Transactions on Antennas and Propagation, Vol. 49, 1807-1811, Dec. 2001.
doi:10.1109/8.982463 Google Scholar
36. Dai, S. Y., C. M. Zhang, and Z. S. Wu, "Electromagnetic scattering of objects above ground using MRTD/FDTD hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2187-2196, 2009.
doi:10.1163/156939309790109306 Google Scholar
37. Shaeffer, J., "Direct solve of electrically large integral equations for problem sizes to 1M unknowns ," IEEE Transactions on Antennas and Propagation, Vol. 56, 2306-2313, Aug. 2008.
doi:10.1109/TAP.2008.926739 Google Scholar
38. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166 Google Scholar
39. Heldring, A., J. Rius, J. Tamayo, J. Parro, and E. Ubeda, "Multiscale compressed block decomposition for fast direct solution of method of moments linear system," IEEE Transactions on Antennas and Propagation, Vol. 59, 526-536, Feb. 2011.
doi:10.1109/TAP.2010.2096385 Google Scholar
40. Zhang, Y., M. Taylor, T. Sarkar, H. Moon, and M. Yuan, "Solving large complex problems using a higher-order basis: Parallel incore and out-of-core integral-equation solvers," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 13-30, 2008.
doi:10.1109/MAP.2008.4653660 Google Scholar
41. García-Donoro, D., Y. Zhang, W. Zhao, T. K. Sarkar, L. E. García-Castillo, and M. Salazar-Palma, "HOBBIES: Higher order basis based integral equation solver with automatic goal oriented optimization," CEFC 2010, Chicago, Illinois, USA, May 2010. Google Scholar
42. Zhang, Y., M. Taylor, T. Sarkar, A. De, M. Yuan, H. Moon, and C. Liang, "Parallel in-core and out-of-core solution of electrically large problems using the RWG basis functions," IEEE Antennas and Propagation Magazine, Vol. 50, No. 5, 84-94, 2008.
doi:10.1109/MAP.2008.4674713 Google Scholar
43. Zhang, Y., R. van de Geijn, M. Taylor, and T. Sarkar, "Parallel MoM using higher-order basis functions and PLAPACK in-core and out-of-core solvers for challenging EM simulations ," IEEE Antennas and Propagation Magazine, Vol. 51, No. 5, 42-60, 2009.
doi:10.1109/MAP.2009.5432038 Google Scholar
44. Li, L.-W., Y.-J. Wang, and E.-P. Li, "MPI-based parallelized precorrected FFT algorithm for analyzing scattering by arbitrarily shaped three-dimensional objects," Progress In Electromagnetics Research, Vol. 42, 247-259, 2003.
doi:10.2528/PIER03030701 Google Scholar
45. Zhang, Y., J. Porter, M. Taylor, and T. Sarkar, "Solving challenging electromagnetic problems using MoM and a parallel out-of-core solver on high performance clusters," IEEE Antennas and Propagation Society International Symposium 2008, AP-S 2008, 1-4, 2008. Google Scholar
46. Harrington, R. F., "Boundary integral formulations for homogenous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016 Google Scholar
47. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy material of arbitrary thickness," IEEE Transactions on Antennas and Propagation, Vol. 3, No. 1, 1-15, 1989. Google Scholar
48. Zhang, Y. and T. K. Sarkar, Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain, Wiley-IEEE Press, Jul. 2009.
49. Message passing interface forum, http://www.mpi-forum.org/.
50. The ScaLAPACK project, http://www.netlib.org/scalapack/.
51. Woo, A., H.Wang, M. Schuh, and M. Sanders, "EM programmer's notebook. Benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas and Propagation Magazine, Vol. 35, 84-89, Feb. 1993.
doi:10.1109/74.210840 Google Scholar
52. Heldring, A., J. M. Rius, and J. M. Tamayo, "Direct MoM solution of electrically large problems with N2 complexity," 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP) , 1-4, 2010. Google Scholar