1. Hau, Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas ," Nature, Vol. 397, No. 6720, 594-598, 1999.
doi:10.1038/17561 Google Scholar
2. Krauss, T. F., "Why do we need slow light?," Nature Photon., Vol. 2, No. 8, 448-450, 2008.
doi:10.1038/nphoton.2008.139 Google Scholar
3. Tsakmakidis, K. L., A. D. Boardman, and O. Hess, "Trapped rainbow' storage of light in metamaterials," Nature, Vol. 450, No. 7168, 397-401, 2007.
doi:10.1038/nature06285 Google Scholar
4. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7-8, 163-182, 1944.
doi:10.1103/PhysRev.66.163 Google Scholar
5. Bouwkamp, C. J., "On the diffraction of electromagnetic waves by circular disks and apertures," Philips Res. Rep., Vol. 5, No. 6, 401-422, 1950. Google Scholar
6. Lewis, A., M. Isaacson, A. Harrontunian, and A. Muray, "Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy, Vol. 13, No. 3, 227-231, 1984.
doi:10.1016/0304-3991(84)90201-8 Google Scholar
7. Ebbesen, T. W., H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays ," Nature, Vol. 391, No. 6668, 667-669, 1998.
doi:10.1038/35570 Google Scholar
8. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett., Vol. 29, No. 21, 2500-2502, 2004.
doi:10.1364/OL.29.002500 Google Scholar
9. Beruete, M., M. Sorolla, I. Campillo, and J. S. Dolado, "Increase of the transmission in cut-off metallic hole arrays," IEEE Microwave Wireless Compon. Lett., Vol. 15, No. 2, 116-118, 2005.
doi:10.1109/LMWC.2004.842852 Google Scholar
10. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, "Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 1897-1903, 2005.
doi:10.1109/TAP.2005.848689 Google Scholar
11. Lomakin, V. and E. Michielssen, "Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 970-984, 2006.
doi:10.1109/TAP.2006.869896 Google Scholar
12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
13. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
14. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
15. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
16. Terracher, F. and G. Berginc, "A broadband dielectric microwave absorber with periodic metallization," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1725-1741, 1999.
doi:10.1163/156939399X00187 Google Scholar
17. Engheta, N., "Thin absorbing screens using metamaterial surfaces," IEEE Antennas Propag. Soc. (AP-S) Int. Symp. USNC/URSI Natl. Radio Sci. Mtg., Vol. 2, 392-395, San Antonio, 2002. Google Scholar
18. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett., Vol. 48, No. 11, 2171-2175, 2006.
doi:10.1002/mop.21891 Google Scholar
19. Kisel, V. N. and A. N. Lagarkov, "Near-perfect absorption by a flat metamaterial plate," Phys. Rev. E, Vol. 76, No. 6, 065601-1-065601-4, 2007.
doi:10.1103/PhysRevE.76.065601 Google Scholar
20. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, New York, 1998.
21. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402-1-207402-4, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
22. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181 Google Scholar
23. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Appl. Phys. Lett., Vol. 95, No. 4, 041106-1-041106-4, 2009.
doi:10.1063/1.3184594 Google Scholar
24. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidi-rectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, No. 6, 063006-1-063006-1, 2010.
doi:10.1088/1367-2630/12/6/063006 Google Scholar
25. Beruete, M., M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays ," Opt. Express, Vol. 14, No. 12, 5445-5455, 2006.
doi:10.1364/OE.14.005445 Google Scholar
26. Navarro-Cía, M., M. Beruete, M. Sorolla, and I. Campillo, "Negative refraction in a prism made of stacked subwavelength hole arrays," Opt. Express, Vol. 16, No. 2, 560-566, 2008.
doi:10.1364/OE.16.000560 Google Scholar
27. Beruete, M., M. Navarro-Cía, F. Falcone, I. Campillo, and M. Sorolla, "Single negative birefringence in stacked spoof plasmon metasurfaces by prism experiment," Opt. Lett., Vol. 35, No. 5, 643-645, 2010.
doi:10.1364/OL.35.000643 Google Scholar
28. Navarro-Cía, M., M. Beruete, F. J. Falcone, M. Sorolla Ayza, and I. Campillo, "Polarization-tunable negative or positive refraction in self-complementariness-based extraordinary transmission prism," Progress In Electromagnetics Research, Vol. 103, 101-114, 2010.
doi:10.2528/PIER10030108 Google Scholar
29. Beruete, M., I. Campillo, M. Navarro-Cía, F. Falcone, and M. Sorolla Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1514-1521, 2007.
doi:10.1109/TAP.2007.897324 Google Scholar
30. Figotin, A. and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E, Vol. 63, No. 6, 066609-1-066609-7, 2001.
doi:10.1103/PhysRevE.63.066609 Google Scholar
31. Figotin, A. and I. Vitebsky, "Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers," Phys. Rev. E, Vol. 72, No. 3, 036619-1-036619-12, 2005.
doi:10.1103/PhysRevE.72.036619 Google Scholar
32. Yarga, S., K. Sertel, and J. L. Volakis, "Degenerate band edge crystals for directive antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 119-126, 2008.
doi:10.1109/TAP.2007.912955 Google Scholar
33. Mumcu, G., K. Sertel, and J. L. Volakis, "Miniature antennas and arrays embedded within magnetic photonic crystals," IEEE Antennas Wirel. Propag. Lett., Vol. 5, No. 1, 168-171, 2006.
doi:10.1109/LAWP.2006.873949 Google Scholar
34. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mat., Vol. 9, No. 3, 205-213, 2010.
doi:10.1038/nmat2629 Google Scholar
35. Beruete, M., Millimeter-wave extraordinary transmission: Connection to metamaterials and technological applications, Ph.D. Thesis, 2006.
36. Engelen, R. J. P., D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Lett., Vol. 101, No. 10, 103901-1-103901-4, 2008.
doi:10.1103/PhysRevLett.101.103901 Google Scholar
37. Beruete, M., I. Campillo, J. E. Rodríguez-Seco, E. Perea, M. Navarro-Cía, I. J. Núñez-Manrique, and M. Sorolla, "Enhanced gain by double-periodic stacked subwavelength hole array," IEEE Microwave Wireless Compon. Lett., Vol. 17, No. 12, 831-833, 2007.
doi:10.1109/LMWC.2007.910470 Google Scholar
38. Yeh, P., "Electromagnetic propagation in birefringent layered media," J. Opt. Soc. Amer., Vol. 69, No. 5, 742-756, 1979.
doi:10.1364/JOSA.69.000742 Google Scholar
39. Mary, A., S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Theory of negative-refractive-index response of double-fishnet structures," Phys. Rev. Lett., Vol. 101, No. 10, 103902-1-103902-4, 2008.
doi:10.1103/PhysRevLett.101.103902 Google Scholar
40. Beruete, M., M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B, Vol. 79, No. 19, 195107-1-195107-, 2009.
doi:10.1103/PhysRevB.79.195107 Google Scholar
41. Beruete, M., M. Navarro-Cía, and M. Sorolla, "Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial ," New J. Phys., Vol. 12, No. 6, 063037-1-063037-15, 2010.
doi:10.1088/1367-2630/12/6/063037 Google Scholar
42. Beruete, M., M. Navarro-Cía, and M. Sorolla, "High numerical aperture and low-loss negative refraction based on the fishnet rich anisotropy," Photon Nanostruct: Fundam Appl., 200, doi: 10.1016/j.photonics.2011.04.009. Google Scholar