1. Pendry, J. B., A. T. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors, and enhanced non-linear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
3. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1126/science.1104467 Google Scholar
4. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173 Google Scholar
5. Enoch, S., G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902 Google Scholar
6. Huang, X. Q., Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials," Nature Materials, Vol. 10, 582-586, 2011.
doi:10.1038/nmat3030 Google Scholar
7. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section ," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603 Google Scholar
8. Zhou, H., S. Qu, Z. Pei, Y. Yang, J. Zhang, J. Wang, H. Ma, C. Gu, X.-H. Wang, and Z. Xu, "A high-directive patch antenna based on all-dielectric near-zero-index metamaterial superstrates," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1387-1396, 2010.
doi:10.1163/156939310791958680 Google Scholar
9. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
10. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
11. Chen, H. Y., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Materials, Vol. 9, 387-396, 2010.
doi:10.1038/nmat2743 Google Scholar
12. Yu, G.-X., T.-J. Cui, W. Xiang, J. Xin, M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 583-592, 2009.
doi:10.1163/156939309788019723 Google Scholar
13. Mei, Z. L., J. Bai, and T. J. Cui, "Illusion devices with quasi-conformal mapping," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2561-2573, 2010.
doi:10.1163/156939310793675664 Google Scholar
14. O'Hara, J. F., R. Singh, et al. "Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations," Opt. Express, Vol. 16, No. 3, 1786-1795, 2008.
doi:10.1364/OE.16.001786 Google Scholar
15. Singh, R., C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, "Spiral-type terahertz antennas and the manifestation of the Mushiake principle," Opt. Express, Vol. 17, No. 12, 9971-9980, 2009.
doi:10.1364/OE.17.009971 Google Scholar
16. Singh, R., E. Plum, et al. "Terahertz metamaterial with asymmetric transmission," Physical Review B, Vol. 80, No. 15, 153104, 2009.
doi:10.1103/PhysRevB.80.153104 Google Scholar
17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
18. Landy, N. I., C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B, Vol. 79, 125104, 2009.
doi:10.1103/PhysRevB.79.125104 Google Scholar
19. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERL09012003 Google Scholar
20. Tao, H., C. M. Bingham, et al. "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 43, 225102, 2010.
doi:10.1088/0022-3727/43/22/225102 Google Scholar
21. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle ," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110 Google Scholar
22. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
doi:10.2528/PIERL10070105 Google Scholar
23. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
24. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," J. Opt. Soc. Am. B, Vol. 27, 498-504, 2010.
doi:10.1364/JOSAB.27.000498 Google Scholar
25. Chen, H. T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, 567-600, 2006. Google Scholar
26. Padilla, W. J., A. J. Taylor, et al. "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Physical Review Letters, Vol. 96, No. 10, 107401, 2006.
doi:10.1103/PhysRevLett.96.107401 Google Scholar
27. Chen, H. T., W. J. Padilla, et al. "Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices," Opt. Lett., Vol. 32, 1620-1622, 2007.
doi:10.1364/OL.32.001620 Google Scholar
28. Chen, H. T., S. Palit, et al. "Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves," Appl. Phys. Lett., Vol. 93, 091117, 2008.
doi:10.1063/1.2978071 Google Scholar
29. Chen, H. T., J. F. O'Hara, et al. "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon., Vol. 2, 295-298, 2008.
doi:10.1038/nphoton.2008.52 Google Scholar
30. Chen, H. T., W. J. Padilla, et al. "A metamaterial solid-state terahertz phase modulator," Nature Photon., Vol. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3 Google Scholar
31. Chen, H. T., J. F. O'Hara, et al. "Complementary planar terahertz metamaterials," Opt. Express, Vol. 15, No. 3, 1084-1095, 2007.
doi:10.1364/OE.15.001084 Google Scholar
32. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance ," Phys. Rev. Lett., Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403 Google Scholar
33. Hao, J. M., L. Zhou, and M. Qiu, "Nearly total absorption of light and heat generation by plasmonic metamaterials," Phys. Rev. B, Vol. 83, 165107, 2011.
doi:10.1103/PhysRevB.83.165107 Google Scholar
34. Liu, N., L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials," Adv. Mater., Vol. 20, 3859-3865, 2008.
doi:10.1002/adma.200702950 Google Scholar
35. Li, T., H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express, Vol. 14, 11155-11163, 2006.
doi:10.1364/OE.14.011155 Google Scholar
36. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater., Vol. 19, 3628-3632, 2007.
doi:10.1002/adma.200700123 Google Scholar
37. Paul, O., C. Imhof, et al. "Polarization-independent active metamaterial for high-frequency terahertz modulation," Opt. Express, Vol. 17, No. 2, 819-827, 2009.
doi:10.1364/OE.17.000819 Google Scholar