1. Gardner, R. A., H. I. Vargas, J. B. Block, C. L. Vogel, A. J. Fenn, G. V. Kuehl, and M. Doval, "Focused microwave phased array thermotherapy for primary breast cancer," Annals of Surgical Oncology, Vol. 9, 326-332, May 2002.
doi:10.1007/BF02573866 Google Scholar
2. Lagendijk, J. J., "Hyperthermia treatment planning," Phys. Med. Biol., Vol. 45, R61-76, May 2000.
doi:10.1088/0031-9155/45/5/201 Google Scholar
3. Sabariego, R. V., L. Landesa, and F. Obelleiro, "Design of a microwave array hyperthermia applicator with a semicircular reflector ," Med. Biol. Eng. Comput., Vol. 37, 612-617, Sep. 1999.
doi:10.1007/BF02513356 Google Scholar
4. Gupta, R. C. and S. P. Singh, "Elliptically bent slotted waveguide conformal focused array for hyperthermia treatment of tumors in curved region of human body," Progress In Electromagnetics Research, Vol. 62, 107-125, 2006.
doi:10.2528/PIER06012801 Google Scholar
5. Cheung, A. Y. and A. Neyzari, "Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques," Cancer. Res., Vol. 44, 4736s-4744s, Oct. 1984. Google Scholar
6. Kato, H. and T. Ishida, "Present and future-status of noninvasive selective deep heating using RF in hyperthermia," Med. Biol. Eng. Comput., Vol. 31, S2-S11, Jul. 1993.
doi:10.1007/BF02446643 Google Scholar
7. Wiersma, J. and J. D. P. Van Dijk, "RF hyperthermia array modelling; validation by means of measured EM-field distributions," Int. J. Hyperthermia, Vol. 17, 63-81, Jan. 2001.
doi:10.1080/02656730150201606 Google Scholar
8. Nilsson, P., T. Larsson, and B. Persson, "Absorbed power distributions from two tilted waveguide applicators," Int. J. Hyperthermia, Vol. 1, 29-43, Jan.-Mar. 1985.
doi:10.3109/02656738509029272 Google Scholar
9. Chen, Z. N., K. Hirasawa, and K. Wu, "A broad-band sleeve monopole integrated into parallel-plate waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1160-1163, Jul. 2000.
doi:10.1109/22.848502 Google Scholar
10. Park, M. Y. and H. J. Eom, "Analysis of a coaxially fed monopole in a rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 15, 253-255, Apr. 2005.
doi:10.1109/LMWC.2005.845732 Google Scholar
11. Bialkowski, M. E., "On the link between top-hat monopole antennas, disk-resonator diode mounts and coaxial-to-waveguide transitions," IEEE Transactions on Antennas and Propagation, Vol. 48, 1011-1013, Jun. 2000.
doi:10.1109/8.865244 Google Scholar
12. Bialkowski, M. E., "Analysis of a coaxial-to-wave-guide adapter including a discended probe and a tuning post," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 344-349, Feb. 1995.
doi:10.1109/22.348094 Google Scholar
13. Bui, V. P., X.-C. Wei, and E. P. Li, "An efficient simulation technology for characterizing the ultra-wide band signal propagation in a wireless body area network," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2575-2588, 2010.
doi:10.1163/156939310793675691 Google Scholar
14. Paulsen, K. D., Calculation of Power Deposition Patterns in Hyperthermia, Clinical Thermology: Thermal Modeling and Thermal Dosimetry, Vol. 2, Springer-Verlag, 1988. Google Scholar
15. Marcuvitz, N., The Institution of Engineering and Technology, Waveguide Handbook.
16. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.
doi:10.2528/PIER09060801 Google Scholar
17. Gabriele, P., T. Ferrara, B. Baiotto, E. Garibaldi, P. G. Marini, G. Penduzzu, V. Giovannini, F. Bardati, and C. Guiot, "Radio hyperthermia for re-treatment of superficial tumours," Int. J. Hyperthermia, Vol. 25, 189-98, May 2009.
doi:10.1080/02656730802669593 Google Scholar
18. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401 Google Scholar
19. Iero, D., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207 Google Scholar
20. Carr, J. J., Practical Antenna Handbook, 4th edition, Mcgraw-Hill Professional, 2001.
21. Kumaradas, J. C. and M. D. Sherar, "An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design," Int. J. Hyperthermia, Vol. 18, 441-53, Sep.-Oct. 2002. Google Scholar
22. Van Rhoon, G. C., P. J. Rietveld, and J. Van Der Zee, "A 433MHz Lucite cone waveguide applicator for superficial hyperthermia," Int. J. Hyperthermia, Vol. 14, 13-27, Jan.-Feb. 1998. Google Scholar
23. Frickey, D. A., "Conversions between S, Z, Y , H, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 205-211, 1994.
doi:10.1109/22.275248 Google Scholar
24. Liang, C.-H., Y. Shi, and T. Su, "S parameter theory of lossless block network," Progress In Electromagnetics Research, Vol. 104, 253-266, 2010.
doi:10.2528/PIER10022611 Google Scholar
25. Pennes, H. H., "Analysis of skin, muscle and brachial arterial blood temperatures in the resting normal human forearm," Am. J. Med. Sci., Vol. 215, 354, Mar. 1948. Google Scholar
26. Mohsin, S. A., N. M. Sheikh, and W. Abbas, "MRI induced heating of artificial bone implants," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 799-808, 2009.
doi:10.1163/156939309788019796 Google Scholar
27. Ebrahimi-Ganjeh, M. A. and A. R. Attari, "Study of water bolus effect on SAR penetration depth and effective field size for local hyperthermia," Progress In Electromagnetics Research B, Vol. 4, 273-283, 2008.
doi:10.2528/PIERB08011403 Google Scholar
28. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies," , Report N.AL/OE-TR-1996-0037, Occupational and environmental heal-th directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas (USA), June 1996. Google Scholar