1. Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science, Vol. 282, 1476-1478, 1998.
doi:10.1126/science.282.5393.1476 Google Scholar
2. Knight, J. C. and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science, Vol. 296, 276-277, 2002.
doi:10.1126/science.1070033 Google Scholar
3. Knight, J. C., "Photonic crystal fibers," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940 Google Scholar
4. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309 Google Scholar
5. Makoui, S., M. Savadi-Oskouei, A. Rostami, and Z. D. Koozehkanani, "Dispersion fltened optical fiber design for large bandwidth and high-speed optical communications using optimization technique," Progress In Electromagnetics Research B, Vol. 13, 21-40, 2009.
doi:10.2528/PIERB08110202 Google Scholar
6. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804 Google Scholar
7. Chau, Y.-F., C.-Y. Liu, H.-H. Yeh, and D. P. Tsai, "A comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber cladding with tetragonal lattice," Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010.
doi:10.2528/PIERB10042405 Google Scholar
8. Karimi, M. and F. E. Seraji, "Effects of geometry on amplification property of erbium doped holey fiber amplifiers using scalar effective index method," Progress In Electromagnetics Research B, Vol. 19, 385-403, 2010.
doi:10.2528/PIERB09122201 Google Scholar
9. Chen, D. and H. Chen, "Highly birefringent low-loss terahertz waveguide: Elliptical polymer tube," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1553-1562, 2010.
doi:10.1163/156939310792149623 Google Scholar
10. Chen, D., M.-L. V. Tse, and H.-Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706 Google Scholar
11. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, No. 18, 1325-1327, 2000.
doi:10.1364/OL.25.001325 Google Scholar
12. Steel, M. J. and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett., Vol. 26, No. 4, 229-231, 2001.
doi:10.1364/OL.26.000229 Google Scholar
13. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightw. Technol., Vol. 25, No. 9, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114 Google Scholar
14. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, No. 4, 185-187, 2007.
doi:10.1109/LPT.2006.890040 Google Scholar
15. Beltrán-Mejía, F., G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. Cordeiro, "Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes," Opt. Lett., Vol. 35, No. 4, 544-546, 2010.
doi:10.1364/OL.35.000544 Google Scholar
16. Chen, D. and G. Wu, "Highly birefringent photonic crystal fiber based on a double-hole unit," Appl. Opt., Vol. 49, No. 9, 1682-1686, 2010.
doi:10.1364/AO.49.001682 Google Scholar
17. Singh, V. and D. Kumar, "Modal dispersion characteristics of a Bragg fiber having plasma in the cladding regions," Progress In Electromagnetics Research, Vol. 89, 167-181, 2009.
doi:10.2528/PIER08112702 Google Scholar
18. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2003.
doi:10.1364/OE.11.000843 Google Scholar
19. Yang, S., Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, Vol. 14, 3015-3023, 2006.
doi:10.1364/OE.14.003015 Google Scholar
20. Wong, G. K. L., L. Zang, M. S. Kang, and P. St. J. Russell, "Measurement of group-velocity dispersion of Bloch modes in photonic-crystal-fiber rocking filters," Opt. Lett., Vol. 35, No. 23, 3982-3984, 2010.
doi:10.1364/OL.35.003982 Google Scholar
21. Birks, T. A., J. C. Knight, and P. St. J. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett., Vol. 22, No. 13, 961-963, 1997.
doi:10.1364/OL.22.000961 Google Scholar
22. Saitoh, K. and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 15, No. 10, 1384-1340, 2003.
doi:10.1109/LPT.2003.818215 Google Scholar
23. Kubota, H., S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 16, 182-184, 2004.
doi:10.1109/LPT.2003.819415 Google Scholar
24. Hu, D. J. J., P. Shum, C. Lu, X. Yu, G. Wang, and G. Ren, "Holey fiber design for single-polarization single-mode guidance," Appl. Opt., Vol. 48, No. 20, 4038-4043, 2009.
doi:10.1364/AO.48.004038 Google Scholar
25. Wang, L., S. Lou, W. Chen, and H. Li, "Design of a single-polarization single-mode photonic crystal fiber with a near-Gaussian mode field and wide bandwidth," Appl. Opt., Vol. 49, No. 32, 6196-6120, 2010.
doi:10.1364/AO.49.006196 Google Scholar
26. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, No. 23, 15365-15376, 2007.
doi:10.1364/OE.15.015365 Google Scholar
27. Welch, M. G., K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, "Solitons in hollow core photonic crystal fiber: Engineering nonlinearity and compressing pulses," J. Lightwave Technol., Vol. 27, No. 11, 1644-1652, 2009.
doi:10.1109/JLT.2009.2019731 Google Scholar
28. Bao, H. and M. Gu, "Reduction of self-phase modulation in double-clad photonic crystal fiber for nonlinear optical endoscopy," Opt. Lett., Vol. 34, No. 2, 148-150, 2009.
doi:10.1364/OL.34.000148 Google Scholar
29. Wang, Y., X. Zhang, X. Ren, L. Zheng, X. Liu, and Y. Huang, "Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss," Appl. Opt., Vol. 49, No. 3, 292-297, 2010.
doi:10.1364/AO.49.000292 Google Scholar
30. Raja, R. V. J., A. Husakou, J. Hermann, and K. Porsezian, "Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response," J. Opt. Soc. Am. B, Vol. 27, No. 9, 1763-1768, 2010.
doi:10.1364/JOSAB.27.001763 Google Scholar
31. Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett., Vol. 28, No. 6, 393-395, 2003.
doi:10.1364/OL.28.000393 Google Scholar
32. Michaille, L., D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, "Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area," Opt. Lett., Vol. 33, No. 1, 71-73, 2008.
doi:10.1364/OL.33.000071 Google Scholar
33. Nodop, D., C. Jauregui, D. Schimpf, J. Limpert, and A. Tünermann, "Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber," Opt. Lett., Vol. 34, No. 22, 3499-3501, 2009.
doi:10.1364/OL.34.003499 Google Scholar
34. Lefrançois, S., K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, "Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber," Opt. Lett., Vol. 35, No. 10, 1569-1571, 2010.
doi:10.1364/OL.35.001569 Google Scholar
35. Baumgartl, M., F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, and A. Tünnermann, "High average and peak power femtosecond large-pitch photonic-crystal-fiber laser," Opt. Lett., Vol. 36, No. 2, 244-246, 2011.
doi:10.1364/OL.36.000244 Google Scholar
36. Astar, W., C.-C. Wei, Y.-J. Chen, J. Chen, and G. M. Carter, "Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF," Opt. Express, Vol. 16, No. 16, 12039-12049, 2008.
doi:10.1364/OE.16.012039 Google Scholar
37. Matsui, T., K. Nakajima, and C. Fukai, "Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wide-band transmission over conventional telecommunication bands," J. Lightwave Technol., Vol. 27, No. 23, 5410-5416, 2009.
doi:10.1109/JLT.2009.2030901 Google Scholar
38. Wang, J., H. Miao, S. Song, and R. Zheng, "Study on compensating methods of transmission system at 40 Gb/s in photonic crystal fiber," Chin. Opt. Lett., Vol. 8, No. 5, 471-473, 2010.
doi:10.3788/COL20100805.0471 Google Scholar
39. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, No. 7, 818-823, 2003.
doi:10.1364/OE.11.000818 Google Scholar
40. Liu, X., X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, "Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg grating and photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 17, No. 8, 1626-1628, 2005.
doi:10.1109/LPT.2005.851024 Google Scholar
41. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, No. 6, 437-439, 2007.
doi:10.1002/lapl.200710003 Google Scholar
42. Fang, X., M. Hu, C. Xie, Y. Song, L. Chai, and C. Wang, "High pulse energy mode-locked multicore photonic crystal fiber laser," Opt. Lett., Vol. 36, No. 6, 1005-1007, 2011.
doi:10.1364/OL.36.001005 Google Scholar
43. Zhu, Z. and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B, Vol. 21, No. 2, 249-257, 2004.
doi:10.1364/JOSAB.21.000249 Google Scholar
44. Kudlinski, A., G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, "White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers," Opt. Lett., Vol. 34, No. 23, 3631-3633, 2009.
doi:10.1364/OL.34.003631 Google Scholar
45. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics, Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285 Google Scholar
46. Hooper, L. E., P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, "Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion," Opt. Express, Vol. 19, No. 6, 4902-4907, 2011.
doi:10.1364/OE.19.004902 Google Scholar
47. Chen, D., G. Hu, M. L. V. Tse, H. Y. Tam, and L. Gao, "Dual-core side-hole fiber for pressure sensing based on intensity detection," Journal of Electromagnetic Waves Applications, Vol. 25, No. 5--6, 775-784, 2011.
doi:10.1163/156939311794827140 Google Scholar
48. Chen, D., M.-L. V. Tse, C. Wu, G. Hu, and H.-Y. Tam, "Highly birefringent four-hole fiber for pressure sensing,", Vol. 114, 145-158, 2011. Google Scholar
49. Dobb, H., K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Eletron. Lett., Vol. 40, No. 11, 657-658, 2004.
doi:10.1049/el:20040433 Google Scholar
50. Dong, X. and H. Y. Tam, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer," Appl. Phys. Lett., Vol. 90, No. 15, 151113-151115, 2007.
doi:10.1063/1.2722058 Google Scholar
51. Ritari, T., J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal bandgap fibers," Opt. Express, Vol. 12, No. 17, 4080-4087, 2004.
doi:10.1364/OPEX.12.004080 Google Scholar
52. Rindorf, L., J. B. Jensen, M. Dufva, L. H. Pedersen, P. T. Høiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express, Vol. 14, No. 18, 8224-48231, 2006.
doi:10.1364/OE.14.008224 Google Scholar
53. Wu, D. K. C., B. T. Kuhlmey, and B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett., Vol. 34, No. 3, 322-324, 2009.
doi:10.1364/OL.34.000322 Google Scholar
54. Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, "Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer," Appl. Opt., Vol. 47, No. 15, 2835-2839, 2008.
doi:10.1364/AO.47.002835 Google Scholar
55. Kim, H. M., T. H. Kim, B. Kim, and Y. Chung, "Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis," Appl. Opt., Vol. 49, No. 20, 3841-3845, 2010.
doi:10.1364/AO.49.003841 Google Scholar
56. Choi, H. Y., M. J. Kim, and B. H. Lee, "All-fiber machzehnder type interferometers formed in photonic crystal fiber," Opt. Express, Vol. 15, No. 9, 5711-5780, 2007.
doi:10.1364/OE.15.005711 Google Scholar
57. Fogli, F., L. Saccomandi, P. Bassi, G. Bellance, and S. Trillo, "Full vectorial BMP modeling of index-guiding photonic crystal fibers and couplers," Opt. Express, Vol. 10, No. 1, 54-59, 2002. Google Scholar
58. Lee, B. H., J. B. Eom, J. Kim, D. S. Moon, and U.-C Paek, "Photonic crystal fiber coupler," Opt. Lett., Vol. 27, No. 10, 812-814, 2002.
doi:10.1364/OL.27.000812 Google Scholar
59. Zhang, L. and C. Yang, "Polarization-dependent coupling in twincore photonic crystal fibers," J. Lightwave Technol., Vol. 22, No. 5, 1367-1373, 2004.
doi:10.1109/JLT.2004.825356 Google Scholar
60. Lagsgaard, J., O. Bang, and A. Bjarklev, "Photonic crystal fiber design for broadband directional coupling," Opt. Lett., Vol. 29, No. 21, 2473-2475, 2004.
doi:10.1364/OL.29.002473 Google Scholar
61. Saitoh, K., Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express, Vol. 11, No. 24, 3188-3195, 2003.
doi:10.1364/OE.11.003188 Google Scholar
62. Saitoh, K., Y. Sato, and M. Koshiba, "Polarization splitter in three-core photonic crystal fibers," Opt. Express, Vol. 12, No. 17, 3940-3946, 2004.
doi:10.1364/OPEX.12.003940 Google Scholar
63. Saitoh, K., N. J. Florous, M. Koshiba, and M. Skorobogatiy, "Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers," Opt. Express, Vol. 13, No. 25, 10327-10335, 2005.
doi:10.1364/OPEX.13.010327 Google Scholar
64. Varshney, S. K., K. Saitoh, R. K. Sinha, and M. Koshiba, "Coupling characteristics of multicore photonic crystal fiber-based 1 × 4 power splitters," J. Lightwave Technol., Vol. 27, No. 12, 2062-2068, 2009.
doi:10.1109/JLT.2008.2006692 Google Scholar
65. Nielsen, M. D., N. A. Mortensen, and J. R. Folkenberg, "Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications," Opt. Lett., Vol. 28, No. 18, 1645-1647, 2003.
doi:10.1364/OL.28.001645 Google Scholar
66. Nielsen, M., N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express, Vol. 12, No. 8, 1775-1779, 2004.
doi:10.1364/OPEX.12.001775 Google Scholar
67. Olszewski, J., M. Szpulak, and W. Urbanczyk, "Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers," Opt. Express, Vol. 13, No. 16, 6105-6022, 2005.
doi:10.1364/OPEX.13.006015 Google Scholar
68. Vu, N. H., I.-K. Hwang, and Y.-H. Lee, "Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method," Opt. Lett., Vol. 33, No. 2, 119-121, 2008.
doi:10.1364/OL.33.000119 Google Scholar
69. Huang, W. P., "Coupled-mode theory for optical waveguides: An overview," J. Opt. Soc. Am. A, Vol. 11, No. 3, 963-983, 1994.
doi:10.1364/JOSAA.11.000963 Google Scholar
70. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704 Google Scholar
71. Liau, J.-J., N.-H. Sun, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, C.-L. Pan, and H.-W. Chang, "A new look at numerical analysis of uniform fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102 Google Scholar
72. Liu, Y. and W.-B. Dou, "Mutually-tapped coupling between combline resonator pairs for ultra-wideband (UWB) filter realization," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1165-1172, 2009. Google Scholar
73. Li, J., J. Wang, and F. Jing, "Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1113-1124, 2010.
doi:10.1163/156939310791586070 Google Scholar
74. Chiang, J.-S., N.-H. Sun, S.-C. Lin, and W.-F. Liu, "Analysis of an ultrashort PCF-based polarization splitter," J. Lightwave Technol., Vol. 28, No. 5, 707-713, 2010.
doi:10.1109/JLT.2009.2036945 Google Scholar