Vol. 123
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-20
Deformable, Time-Varying Boundary Problems in Electrodynamics
By
Progress In Electromagnetics Research, Vol. 123, 227-241, 2012
Abstract
A novel perturbation technique is formulated that enables the efficient calculation of current on surfaces undergoing time-varying mechanical deformations. The technique computes the current on the perturbed surface using as its starting point the solution for a related static case. This is initially derived using a standard analytical or numerical technique. The key advantage of this approach is that only an initial (computationally expensive) electromagnetic characterisation of the static problem is required. The surface current perturbation terms (and hence the radiated fields) are then directly computed from the static problem with a very low computational overhead.
Citation
M. J. Mehler Constantinos Constantinou M. J. Neve , "Deformable, Time-Varying Boundary Problems in Electrodynamics," Progress In Electromagnetics Research, Vol. 123, 227-241, 2012.
doi:10.2528/PIER11102003
http://www.jpier.org/PIER/pier.php?paper=11102003
References

1. Abdelazeez, M., L. Peach, and S. Borkar, "Scattering of electromagnetic waves from moving surfaces," IEEE Trans. Antennas Propagat., Vol. 27, No. 5, 679-684, 1979.
doi:10.1109/TAP.1979.1142162

2. Kleinman, R. and R. Mack, "Scattering by linearly vibrating objects," IEEE Trans. Antennas Propagat., Vol. 27, No. 3, 344-352, 1979.
doi:10.1109/TAP.1979.1142085

3. Van Bladel, J. and D. De Zutter, "Reflections from linearly vibrating objects: Plane mirror at normal incidence," IEEE Trans. Antennas Propagat., Vol. 29, No. 4, 629-637, 1981.
doi:10.1109/TAP.1981.1142645

4. Ho, M., "One-dimensional simulation of reflected EM pulses from objects vibrating at different frequencies," Progress In Electromagnetics Research, Vol. 53, 239-248, 2005.
doi:10.2528/PIER04100502

5. Ho, M., "Numerical simulation of scattering of electromagnetic waves from traveling and/or vibrating perfect conducting planes," IEEE Trans. Antennas Propagat., Vol. 54, No. 1, 152-156, 2006.
doi:10.1109/TAP.2005.861552

6. Ho, M., "Simulation of scattered em fields from rotating cylinder using passing center swing back grids technique in two dimensions," Progress In Electromagnetics Research, Vol. 92, 79-90, 2009.
doi:10.2528/PIER09030302

7. Pelloni, B. and D. A. Pinotsis, "Moving boundary value problems for the wave equation," Journal of Comp. and Appl. Math., Vol. 234, 1685-1691, 2010.
doi:10.1016/j.cam.2009.08.016

8. Harrington, R. F., Field Computation by Moment Methods, Wiley, 1993.
doi:10.1109/9780470544631

9. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2005.

10. Armenta, R. B. and C. D. Sarris, "Exploiting the relativistic formulation of maxwells equations to introduce moving grids into finite difference time domain solvers," Proc. IEEE Intl. Microw. Symp. (MTT-S), 93-96, 2010.
doi:10.1109/MWSYM.2010.5517127

11. Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press, 1991.

12. Johnson, S. G., M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for maxwells equations with shifting material boundaries," Phys. Rev. E, Vol. 65, 066611, 2002.
doi:10.1103/PhysRevE.65.066611

13. Wait, J. R., Introduction to Antennas and Propagation, Peregrinus, London, 1986.

14. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 78, 25-38, 2008.
doi:10.2528/PIER07081601

15. Henin, B. H., A. Z. Elsherbeni, and M. H. Al Sharkawy, "Oblique incidence plane wave scattering from an array of circular dielectric cylinders," Progress In Electromagnetics Research, Vol. 68, 261-279, 2007.
doi:10.2528/PIER06083102

16. Yan, W.-Z., Y. Du, Z. Li, E.-X. Chen, and J.-C. Shi, "Characterization of the validity region of the extended T-matrix method for scattering from dielectric cylinders with finite length," Progress In Electromagnetics Research, Vol. 96, 309-328, 2009.
doi:10.2528/PIER09083101

17. Kreyszig, E., Differential Geometry, Dover, New York, 1991.

18. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1975.

19. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.