1. Gavrila, D. M., "Sensor-based pedestrian protection," IEEE Intelligent System, Vol. 16, No. 6, 77-81, 2001.
doi:10.1109/5254.972097 Google Scholar
2. Russel, M. E., A. Crain, A. Campbell, C. A. Drubin, and W. F. Miccioli, "Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 12, 2444-2453, Dec. 1997.
doi:10.1109/22.643858 Google Scholar
3. Giubbolini, L., "A multistatic microwave radar sensor for short range anticollision warning," IEEE Trans. Veh. Technol., Vol. 49, No. 6, 2270-2275, Nov. 2000.
doi:10.1109/25.901896 Google Scholar
4. Wenger, J., "Automotive MM-wave radar: Status and trends in system design and technology," IEE Colloquium on Automotive Radar and Navigation Techniques, Feb. 1998. Google Scholar
5. Rasshofer, R. H. and K. Gresser, "Automotive radar and lidar systems for next generation driver assistance functions," Advances in Radio Science, Vol. 3, 205-209, 2005.
doi:10.5194/ars-3-205-2005 Google Scholar
6. IVHS countermeasures for rear-end collisions, task 1: Volume VI Human factors studies, U.S. Dept. Transportation, Washington, DC, Feb. 1994. [Online]. DOT Rep. HS 808 565.Available: http://www.itsdocs.fhwa.dot.gov/jpodocs/repts te/45101!.pdf.
7. Zechnall, M. The `sensitive' automobile-Bosch sensors for complete environmental sensing, Press release, Bosch GMBH, Reutlingen, Germany, Apr. 2001.
8. Rasshofer, R. H. and K. Naab, "77 GHz long range radar systems status, ongoing developments and future challenges," Radar Conf., 2005. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber =01605590. Google Scholar
9. Kawakubo, A., S. Tokoro, Y. Yamada, and T. Kawasaki, "Electronically-scanning millimeter-wave RADAR for forward objects detection," SAE Congress, Vol. 127, No. 134, 2004. Google Scholar
10. Wixforth, T. and W. Ritschel, "Multimode-radar-technologie für 24 GHz," Auto Elektronik, Vol. 3, 56-58, 2004. Google Scholar
11. Gresham, I., et al. "Ultra-wideband radar sensors for short-range vehicular applications," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 9, 2105-2122, Sep. 2004.
doi:10.1109/TMTT.2004.834185 Google Scholar
12. Jeong, S. H., J. N. Oh, and K. H. Lee, "Design of 24 GHz radar with subspace-based digital beam forming for ACC stop-and-go system," ETRI Journal, Vol. 32, No. 5, 827-830, Oct. 2010.
doi:10.4218/etrij.10.0210.0107 Google Scholar
13. Lee, M. S. and Y. H. Kim, "Design and performance of a 24-GHz switch-antenna array FMCW radar system for automotive applications," IEEE Trans. Veh. Technol., Vol. 59, No. 5, 2290-2297, Jun. 2010.
doi:10.1109/TVT.2010.2045665 Google Scholar
14. Yamaguchi, Y., M. Mitsumoto, M. A. Kawakami, M. Sengoku, and T. Abe, "Detection of objects by synthetic aperture FMCW radar," Electron. Commun. Jpn. I: Commun., Vol. 75, No. 3, 85-94, Mar. 1992.
doi:10.1002/ecja.4410750309 Google Scholar
15. Ishimaru, A. and H. S. Tuan, "Theory of frequency scanning antennas," IEEE Trans. Antennas Propagat., Vol. 10, Mar. 1962. Google Scholar
16. Lange, M., J. Detlefsen, M. Bockmair, and U. Trampnau, "A millimeterwave low-range radar altimeter for helicopter applications --- System design," Conf. Proc. European Microwave Conf., 222-227, 1987. Google Scholar
17. Boukari, B., E. Moldvan, S. Affes, K. Wu, R. G. Bosisio, and S. O. Tatu, "A heterodyne six-port FMCW radar sensor architecture based on beat signal phase slope techniques," Progress In Electromagnetics Research, Vol. 93, 307-322, 2009.
doi:10.2528/PIER09052610 Google Scholar
18. Huang, Y., P. V. Brennan, D. Patrick, I. Weller, P. Roberts, and K. Hughes, "FMCW based MIMO imaging radar for maritime navigation," Progress In Electromagnetics Research, Vol. 115, 327-342, 2011. Google Scholar
19. Axelsson, S., "Area target response of triangularly frequency-modulated continuous-wave radars," IEEE Trans. Aerospace Electron. Syst., Vol. 14, 266-277, Mar. 1978.
doi:10.1109/TAES.1978.308647 Google Scholar
20. Li, D. D., S. C. Luo, C. Pero, X.Wu, and R. M. Knox, "Millimeter-wave FMCW/monopulse radar front-end for automotive applications," MTT-S Int. Microwave Symp. Dig., 277-280, 1999. Google Scholar
21. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902 Google Scholar
22. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with subarray divided technique and interporlated ESPRIT algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904 Google Scholar
23. Alsehaili, M., S. Noghanian, A. R. Sebak, and D. A. Buchanan, "Angle and time of arrival statistics of a three dimensional geometrical scattering channel model for indoor and outdoor propagation environments," Progress In Electromagnetics Research, Vol. 109, 191-209, 2010.
doi:10.2528/PIER10081106 Google Scholar
24. Zhang, X., G. Feng, and D. Xu, "Blind direction of angle and time delay estimation algorithm for uniform linear array employing multi-invariance MUSIC," Progress In Electromagnetics Research Letters, Vol. 13, 11-20, 2010.
doi:10.2528/PIERL09102611 Google Scholar
25. Lee, J.-H., Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister, "Application of the Newton method to improve the accuracy of toa estimation with the beamforming algorithm and the music algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011. Google Scholar
26. Krim, H. and M. Viberg, "Two decades of array signal processing research," IEEE Signal Processing Magazine, Jul. 1996. Google Scholar
27. Chen, Z. and S. Otto, "A taper optimization for pattern synthesis of microstrip series-fed patch array antennas," IEEE EUWIT, 160-163, 2009. Google Scholar
28. Musch, T., "A high precision 24-GHz FMCW radar based on a fractional-N ramp-PLL," IEEE Trans. Instrumentation and Measurement, Vol. 52, 324-327, Apr. 2003.
doi:10.1109/TIM.2003.810046 Google Scholar
29. Bartlett, M. S., "Smoothing periodograms from time-series with continuous spectra," Nature, Vol. 161, 686-687, 1948.
doi:10.1038/161686a0 Google Scholar
30. Schmidt, R. O. A signal subspace approach to multiple emitter location and spectral estimation, Ph.D. Thesis, Stanford Univ., Stanford, CA, Nov. 1981.
31. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830 Google Scholar
32. Lee, H. B. and M. S. Wengrovitz, "Resolution threshold of beamspace MUSIC for two closely spaced emitters," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 38, 1545-1559, Sep. 1990.
doi:10.1109/29.60074 Google Scholar
33. Li, J., "Improved angular resolution for spatial smoothing techniques," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 40, 3078-3081, Dec. 1992. Google Scholar
34. Rawiwan, P., P. Satayarak, P. Supanakoon, M. Chamchoy, S. Promwong, and P. Tangtisanon, "Direction-of-arrival estimation using MUSIC and ESPRIT algorithm," EECON-24, 682-686, Nov. 2001. Google Scholar
35. Phaisal-atsawasenee, N. and R. Suleesathira, "Improved angular resolution of beamspace MUSIC for finding directions of coherent sources," IEEE ISSCAA, 51-56, Harbin, China, Jan. 2006.