1. Pozar, D. M., Microwave Engineering, 2nd Ed., Chapter 7, Wiley, 1998.
2. Li, J. L., S. W. Qu, and Q. Xue, "Capacitively loaded Wilkinson power divider with size reduction and harmonic suppression," Microwave and Optical Technology Letters, Vol. 49, No. 11, 2737-2739, Nov. 2007.
doi:10.1002/mop.22869 Google Scholar
3. Oraizi, H. and M. S. Esfahlan, "Miniaturization of Wilkinson power dividers by using defected ground structures," Progress In Electromagnetics Research Letters, Vol. 4, 113-120, 2008.
doi:10.2528/PIERL08060701 Google Scholar
4. Shamsinejad, S., M. Soleimani, and N. Komjani, "Novel miniaturized Wilkinson power divider for 3G mobile receivers," Progress In Electromagnetics Research Letters, Vol. 3, 9-16, 2008.
doi:10.2528/PIERL08012603 Google Scholar
5. He, J., B. Z. Wang, and W. Shao, "Compact power divider embedded with zigzag microstrip slow-wave structures," Electronics Letters, Vol. 45, No. 1, 62-63, Jan. 2009.
doi:10.1049/el:20091954 Google Scholar
6. Zhang, Z., Y.-C. Jiao, S. Tu, S.-M. Ning, and S.-F. Cao, "A miniaturized broadband 4 : 1 unequal Wilkinson power divider," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 505-511, 2010. Google Scholar
7. Sedighi, S.-H. and M. Khalaj-Amirhosseini, "Compact Wilkinson power divider using stepped impedance transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1773-1782, 2011.
doi:10.1163/156939311797453980 Google Scholar
8. Wang, X. Y., J.-L. Li, and W. Shao, "Flexible design of a compact coupled-line power divider," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2168-2177, 2011.
doi:10.1163/156939311798147033 Google Scholar
9. Huang, W., C.-J. Liu, Q. Chen, Y.-N. Li, X. Chen, and K.-M. Huang, "Compact unequal Wilkinson power dividers using planar artificial transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2201-2211, Sep. 2011.
doi:10.1163/156939311798147088 Google Scholar
10. Gupta, N., P. Ghosh, and M. Toppo, "A miniaturized Wilkinson power divider using DGS and fractal structure for GSM application," Progress In Electromagnetics Research Letters, Vol. 27, 25-31, 2011.
doi:10.2528/PIERL11082104 Google Scholar
11. Li, X., Y.-J. Yang, L. Yang, S.-X. Gong, X. Tao, Y. Gao, K. Ma, and X.-L. Liu, "A novel design of dual-band unequal Wilkinson power divider," Progress In Electromagnetics Research C, Vol. 12, 93-100, 2010.
doi:10.2528/PIERC10010705 Google Scholar
12. Park, M. J. and B. Lee, "A dual-band Wilkinson power divider," IEEE Microwave Wireless Components Letters, Vol. 18, No. 2, 85-87, Feb. 2008.
doi:10.1109/LMWC.2007.915031 Google Scholar
13. Yang, T., C.-J. Liu, L. Yan, and K.-M. Huang, "A compact dual-band power divider using planar artificial transmission lines for GSM/DCS applications," Progress In Electromagnetics Research Letters, Vol. 10, 185-191, 2009.
doi:10.2528/PIERL09073107 Google Scholar
14. Wu, Y., Y. Liu, and S. Li, "An unequal dual-frequency Wilkinson power divider with optional isolation structure," Progress In Electromagnetics Research, Vol. 91, 393-411, 2009.
doi:10.2528/PIER09030501 Google Scholar
15. Wu, Y., Y. Liu, and S. Li, "Dual-band modified Wilkinson power divider without transmission line stubs and reactive components," Progress In Electromagnetics Research, Vol. 96, 9-20, 2009.
doi:10.2528/PIER09072109 Google Scholar
16. Wu, Y., Y. Liu, S. Li, C. Yu, and X. Liu, "Closed-form design method of an N-way dual-band Wilkinson hybrid power divider," Progress In Electromagnetics Research, Vol. 101, 97-114, 2010.
doi:10.2528/PIER09111906 Google Scholar
17. Shamaileh, K. A. A. and N. I. Dib, "Design of compact dual-frequency Wilkinson power divider using non-uniform transmission lines," Progress In Electromagnetics Research C, Vol. 19, 37-46, 2011. Google Scholar
18. Wu, Y., Y. Liu, Y. Zhang, J. Gao, and H. Zhou, "A dual band unequal Wilkinson power divider without reactive components," IEEE Transactions Microwave Theory Techniques, Vol. 57, No. 1, 216-222, Jan. 2009.
doi:10.1109/TMTT.2008.2008981 Google Scholar
19. Li, J. C., J. C. Nan, X. Y. Shan, and Q. F. Yan, "A novel modified dual-frequency Wilkinson power divider with open stubs and optional isolation," Journal of Electromagnetic Waves and Applications, Vol. 24, 2223-2235, 2010.
doi:10.1163/156939310793699163 Google Scholar
20. Lin, Z. and Q.-X. Chu, "A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines," Progress In Electromagnetics Research, Vol. 103, 271-284, 2010.
doi:10.2528/PIER10012202 Google Scholar
21. Huang, W., C.-J. Liu, L. Yan, and K.-M. Huang, "A miniaturized dual-band power divider with harmonic suppression for GSM applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 81-91, 2010.
doi:10.1163/156939310790322082 Google Scholar
22. Wang, X. H., L. Chen, X.-W. Shi, Y. F. Bai, L. Chen, and X.-Q. Chen, "Planar dual-frequency power divider using umbrella-shaped resonator," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 597-606, 2010.
doi:10.1163/156939310791036377 Google Scholar
23. Li, X., Y.-J. Yang, L. Yang, S.-X. Gong, T. Hong, X. Chen, Y.-J. Zhang, X. Tao, Y. Gao, K. Ma, and X.-L. Liu, "A novel unequal Wilkinson power divider for dual-band operation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1015-1022, 2010.
doi:10.1163/156939310791585990 Google Scholar
24. Dai, G. L. and M. Y. Xia, "A dual-band unequal Wilkinson power divider using asymmetric coupled-line," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11--12, 1587-1595, 2011.
doi:10.1163/156939311797164981 Google Scholar
25. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108 Google Scholar
26. Yang, J., C. Gu, and W. Wu, "Design of novel compact coupled microstrip power divider with harmonic suppression," IEEE Microwave Wireless Components Letters, Vol. 18, No. 9, 572-574, Sep. 2008.
doi:10.1109/LMWC.2008.2002444 Google Scholar
27. Yi, K. H. and B. Kang, "Modified Wilkinson power divider for nth harmonic suppression," IEEE Microwave Wireless Components Letters, Vol. 13, No. 5, 178-180, May 2003.
doi:10.1109/LMWC.2003.811670 Google Scholar
28. Tu, W. H., "Compact Wilkinson power divider with harmonic suppression," Microwave and Optical Technology Letters, Vol. 49, No. 11, 2825-2827, Nov. 2007.
doi:10.1002/mop.22875 Google Scholar
29. Fan, F., Z. H. Yan, and J. B. Jiang, "Design of a novel compact power divider with harmonic suppression," Progress In Electromagnetics Research Letters, Vol. 5, 151-157, 2008.
doi:10.2528/PIERL08111808 Google Scholar
30. Cheng, K. K. M. and W. C. Ip, "A novel power divider design with enhanced spurious suppression and simple structure," IEEE Transactions Microwave Theory Techniques, Vol. 58, No. 12, 3903-3908, Dec. 2010. Google Scholar
31. Ahn, H. R. and I. Wolff, "General design equations, small-sized impedance transformers, and their application to small-sized three-port 3-dB power dividers," IEEE Transactions Microwave Theory Techniques, Vol. 49, No. 7, 1277-1288, Jul. 2001.
doi:10.1109/22.932248 Google Scholar
32. Chen, H. and Y.-X. Zhang, "A novel compact planar six-way power divider using folded and hybrid-expanded coupled lines," Progress In Electromagnetics Research, Vol. 76, 243-252, 2007.
doi:10.2528/PIER07070601 Google Scholar
33. Kim, J. G. and G. M. Rebeiz, "Miniature four-way and two-way 24 GHz Wilkinson power dividers in 0.13μm CMOS," IEEE Microwave Wireless Components Letters, Vol. 17, No. 9, 658-660, 2007.
doi:10.1109/LMWC.2007.903451 Google Scholar
34. Parad, L. I. and R. L. Moynihan, "Split-tee power divider," IEEE Transactions Microwave Theory Techniques, Vol. 13, No. 1, 91-95, Jan. 1965.
doi:10.1109/TMTT.1965.1125934 Google Scholar
35. Naghavi, A. H., M. Tondro Aghmiyouni, M. Jahanbakht, and A. A. Lotfi Neyestanak, "Hybrid wideband microstrip Wilkinson power divider based on lowpass filter optimized using particle swarm method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14--15, 1877-1886, 2010. Google Scholar
36. Qaroot, A. M. and N. I. Dib, "General design of N-way multi-frequency unequal split Wilkinson power divider using transmission line transformers," Progress In Electromagnetics Research C, Vol. 14, 115-129, 2010.
doi:10.2528/PIERC10060109 Google Scholar
37. Peters, F. D. L., D. Hammou, S. O. Tatu, and T. A. Denidni, "Modified millimeter-wave Wilkinson power divider for antenna feeding networks," Progress In Electromagnetics Research Letters, Vol. 17, 11-18, 2010.
doi:10.2528/PIERL10061805 Google Scholar
38. Kim, K., J. Byun, and H.-Y. Lee, "Substrate integrated waveguide Wilkinson power divider with improved isolation performance," Progress In Electromagnetics Research Letters, Vol. 19, 41-48, 2010. Google Scholar
39. Zhou, B., H. Wang, and W.-X. Sheng, "A modified UWB Wilkinson power divider using delta stub," Progress In Electromagnetics Research Letters, Vol. 19, 49-55, 2010. Google Scholar
40. Chiang, C. T. and B.-K. Chung, "Ultra wideband power divider using tapered line," Progress In Electromagnetics Research, Vol. 106, 61-73, 2010.
doi:10.2528/PIER10061603 Google Scholar
41. Qaroot, A. M., N. I. Dib, and A. A. Gheethan, "Design methodology of multi-frequency unequal split Wilkinson power dividers using transmission line transformers," Progress In Electromagnetics Research B, Vol. 22, 1-21, 2010.
doi:10.2528/PIERB10042809 Google Scholar
42. Huang, S., X. Xie, and B. Yan, "K band Wilkinson power divider based on a taper equation," Progress In Electromagnetics Research Letters, Vol. 27, 75-83, 2011.
doi:10.2528/PIERL11080809 Google Scholar
43. Wu, Y. and Y. Liu, "An unequal coupled-line Wilkinson power divider for arbitrary terminated impedances," Progress In Electromagnetics Research, Vol. 117, 181-194, 2011. Google Scholar
44. Wang, D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
doi:10.2528/PIER11052303 Google Scholar